import altair import gradio as gr from math import sqrt import pandas as pd from datetime import datetime from IPython.display import display matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np import plotly.express as px # pip install beautifulsoup4 # pip install requests_html import requests from bs4 import BeautifulSoup as bs from requests_html import AsyncHTMLSession # Webページを取得して解析する load_url = "https://www.football-lab.jp/kyot/match/" html = requests.get(load_url) soup = bs(html.content, "html.parser") url23 = 'https://www.football-lab.jp/ka-f/match/' dfs23 = pd.read_html(url23) url22 = 'https://www.football-lab.jp/ka-f/match/?year=2022' dfs22 = pd.read_html(url22) url21 = 'https://www.football-lab.jp/ka-f/match/?year=2021' dfs21 = pd.read_html(url21) url20 = 'https://www.football-lab.jp/ka-f/match/?year=2020' dfs20 = pd.read_html(url20) #シーズン毎に分類 res23 = pd.DataFrame([['S2023']]*len(dfs23[0])).join(dfs23, lsuffix='0') res22 = pd.DataFrame([['S2022']]*len(dfs22[0])).join(dfs22, lsuffix='0') res21 = pd.DataFrame([['S2021']]*len(dfs21[0])).join(dfs21, lsuffix='0') res20 = pd.DataFrame([['S2020']]*len(dfs20[0])).join(dfs20, lsuffix='0') df_tmp = pd.concat([res23, res22, res21, res20]) df = df_tmp df = df.rename(columns={'会場': 'stadium', 0: 'year', '開催日': 'date', '観客数': 'audience'}) df = df.query('stadium=="等々力"').reset_index() df = df.query('audience.notna()', engine='python').reset_index() df = df[['audience', 'year', 'date']] #seasonカラムから年を抽出 df["year"] = df["year"].apply(lambda x: str(x)[1:5]) #開催日から月と日を分割 df['month'] = df['date'].str.split(pat='.', expand=True)[0] df['day'] = df['date'].str.split(pat='.', expand=True)[1] #数値データを日付データに変換 df['date'] = pd.to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']}) #日付昇順に並び替える df = df.sort_values('date', ascending=True) df['date_ymd'] = pd.to_datetime(df['date']).dt.strftime('%Y%m%d') df['date_ym'] = pd.to_datetime(df['date']).dt.strftime('%Y%m') df["date_ymd"] = df["date_ymd"].astype(int) df['date_before'] = df['date_ymd'] - 1 df["date_before"] = df["date_before"] df = df[['audience', 'date_ymd', 'date_before']] df['last_audience'] = df['audience'].shift(1) df_aji = pd.read_csv('fish_price.csv') df_train = pd.merge(df, df_aji, left_on='date_before', right_on='date', how='left') df_train = df_train.query('date > 20201202') df_train = df_train.drop(['date_before', 'date_ymd'], axis=1) df_train["audience"] = df_train["audience"].str.replace(",", "").astype(int) df_train["last_audience"] = df_train["last_audience"].str.replace(",", "").astype(int) X = df_train.drop('audience', axis=1) y = df_train['audience'] from sklearn.linear_model import LinearRegression from sklearn.metrics import log_loss from sklearn.preprocessing import StandardScaler linear_regression = LinearRegression() linear_regression.fit(X,y) def outbreak(date): if date: if __name__ == "__main__": start_date = d_today end_date = d_tom df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date) # df_aji_pre.to_csv("fish_price_pre.csv", index=False) df_pre = df.tail(1).reset_index() df_pre = df_pre.drop('index', axis=1) df_aji_ft_pre = pd.concat([df_pre, df_aji_pre], axis=1) df_aji_ft_pre = df_aji_ft_pre[['audience', 'date', 'low_price', 'center_price', 'high_price', 'quantity']] df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date', '観客数': 'audience'}) pred = linear_regression.predict(df_aji_ft_pre) df_aji_ft_pre['audience_pred'] = pred df_aji_ft_pre['date'] = df_aji_ft_pre['date'].astype(int) fig = plt.figure() plt.plot(df_train['date'], df_train['audience'], label='original') plt.plot(df_aji_ft_pre['date'], df_aji_ft_pre['audience_pred'], '*', label='predict') plt.title("prediction of audince") plt.ylabel("audience") plt.xlabel("Days since Day 0") return fig with gr.Blocks() as demo: gr.Markdown( """ # 川崎フロンターレの観客動員数の予測 川崎フロンターレの等々力陸上競技場での試合の観客数を「あじ」の価格をもとに予測する。 ## 使用データ * 東京卸売市場日報 * Football Lab ## 予測ロジック 観客動員数は雨天か否かで左右されると考えられる。そこで雨天の可能性をあじの価格を利用し表した。 一般的に雨天の場合、低気圧の影響で海面が上昇し漁に出ることが難しくなる。 そのため漁獲量が減少し、あじの価格が上昇すると考えられる。 """ ) with gr.Row(): with gr.Column(): date_input = gr.Checkbox(label='please input date') prediction_btn = gr.Button(value="predict") with gr.Column(): prediction = gr.Plot(label = "時系列プロット") prediction_btn.click(outbreak, inputs=date_input, outputs=prediction) demo.launch()