Spaces:
Sleeping
Sleeping
File size: 5,057 Bytes
9309109 907e68e 3fc5824 39591e8 6c514fd 39591e8 3fc5824 e1bb0a3 34bee7a e1bb0a3 9309109 3fc5824 9309109 3fc5824 be82676 3fc5824 550c744 22c6cd8 d2bbaf7 22c6cd8 3fc5824 907e68e 9309109 907e68e d2bbaf7 22c6cd8 d2bbaf7 907e68e 22c6cd8 907e68e 22c6cd8 907e68e 22c6cd8 907e68e 22c6cd8 907e68e 3fc5824 9309109 907e68e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import HTMLResponse
from transformers import pipeline
from PIL import Image
import io
app = FastAPI()
# Load the image classification pipeline
pipe = pipeline("image-classification", model="mateoluksenberg/dit-base-Classifier_CM05")
@app.post("/test/")
async def test_endpoint(message: dict):
if "text" not in message:
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
response = {"message": f"Received your message: {message['text']}"}
return response
@app.post("/classify/")
async def classify_image(file: UploadFile = File(...)):
try:
# Read the file contents into a PIL image
image = Image.open(file.file).convert('RGB')
# Perform image classification
result = pipe(image)
# Overall result summary
overall_result = str(result)
# Add overall result as comment to the top result
result_with_comment = {
"label": result[0]['label'],
"score": result[0]['score'],
}
return {"classification_result": result_with_comment, "overall_result": overall_result} # Return the top prediction with comment and overall summary
except Exception as e:
# Handle exceptions, for example: file not found, image format issues, etc.
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
@app.get("/", response_class=HTMLResponse)
async def home():
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Image Classification</title>
<style>
body {
font-family: Arial, sans-serif;
background-color: #f0f0f0;
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
flex-direction: column;
}
h1 {
color: #333;
}
form {
margin: 20px 0;
padding: 20px;
background: #fff;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
border-radius: 8px;
}
input[type="file"] {
margin-bottom: 10px;
}
button {
background-color: #4CAF50;
color: white;
border: none;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #45a049;
}
#result, #overall-results {
margin-top: 20px;
padding: 20px;
background: #fff;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
border-radius: 8px;
max-width: 500px;
word-wrap: break-word;
}
</style>
</head>
<body>
<h1>Upload an Image for Classification</h1>
<form id="upload-form" enctype="multipart/form-data">
<input type="file" id="file" name="file" accept="image/*" required />
<button type="submit">Upload</button>
</form>
<div id="result"></div>
<div id="overall-results"></div>
<script>
const form = document.getElementById('upload-form');
form.addEventListener('submit', async (e) => {
e.preventDefault();
const fileInput = document.getElementById('file');
const formData = new FormData();
formData.append('file', fileInput.files[0]);
const response = await fetch('/classify/', {
method: 'POST',
body: formData
});
const result = await response.json();
const resultDiv = document.getElementById('result');
const overallResultsDiv = document.getElementById('overall-results');
if (response.ok) {
resultDiv.innerHTML = `<h2>Top Classification Result:</h2><p>${JSON.stringify(result.classification_result)}</p>`;
overallResultsDiv.innerHTML = `<h2>All Results:</h2><p>${result.overall_result}</p>`;
} else {
resultDiv.innerHTML = `<h2>Error:</h2><p>${result.detail}</p>`;
overallResultsDiv.innerHTML = '';
}
});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
# Sample usage:
# 1. Start the FastAPI server
# 2. Open the browser and navigate to the root URL to upload an image and see the classification result
|