Spaces:
Runtime error
Runtime error
mateoluksenberg
commited on
Commit
β’
143b559
1
Parent(s):
f53527d
Update app.py
Browse files
app.py
CHANGED
@@ -97,65 +97,7 @@ def run_example(image, text_input=None, model_id="mateoluksenberg/Qwen-modelo-im
|
|
97 |
)
|
98 |
|
99 |
"---------------"
|
100 |
-
|
101 |
-
from qwen_vl_utils import process_vision_info
|
102 |
-
|
103 |
-
# default: Load the model on the available device(s)
|
104 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
105 |
-
"mateoluksenberg/Qwen-modelo-image", torch_dtype="auto", device_map="auto"
|
106 |
-
)
|
107 |
-
|
108 |
-
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
109 |
-
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
110 |
-
# "Qwen/Qwen2-VL-2B-Instruct",
|
111 |
-
# torch_dtype=torch.bfloat16,
|
112 |
-
# attn_implementation="flash_attention_2",
|
113 |
-
# device_map="auto",
|
114 |
-
# )
|
115 |
-
|
116 |
-
# default processer
|
117 |
-
processor = AutoProcessor.from_pretrained("mateoluksenberg/Qwen-modelo-image")
|
118 |
-
|
119 |
-
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
120 |
-
# min_pixels = 256*28*28
|
121 |
-
# max_pixels = 1280*28*28
|
122 |
-
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
123 |
-
|
124 |
-
messages = [
|
125 |
-
{
|
126 |
-
"role": "user",
|
127 |
-
"content": [
|
128 |
-
{
|
129 |
-
"type": "image",
|
130 |
-
"image": image_path,
|
131 |
-
},
|
132 |
-
{"type": "text", "text": "Describe this image."},
|
133 |
-
],
|
134 |
-
}
|
135 |
-
]
|
136 |
-
|
137 |
-
# Preparation for inference
|
138 |
-
text = processor.apply_chat_template(
|
139 |
-
messages, tokenize=False, add_generation_prompt=True
|
140 |
-
)
|
141 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
142 |
-
inputs = processor(
|
143 |
-
text=[text],
|
144 |
-
images=image_inputs,
|
145 |
-
videos=video_inputs,
|
146 |
-
padding=True,
|
147 |
-
return_tensors="pt",
|
148 |
-
)
|
149 |
-
inputs = inputs.to("cuda")
|
150 |
-
|
151 |
-
# Inference: Generation of the output
|
152 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
153 |
-
generated_ids_trimmed = [
|
154 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
155 |
-
]
|
156 |
-
output_text = processor.batch_decode(
|
157 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
158 |
-
)
|
159 |
print(output_text)
|
160 |
"---------------"
|
161 |
|
|
|
97 |
)
|
98 |
|
99 |
"---------------"
|
100 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
print(output_text)
|
102 |
"---------------"
|
103 |
|