mateoluksenberg commited on
Commit
143b559
β€’
1 Parent(s): f53527d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -59
app.py CHANGED
@@ -97,65 +97,7 @@ def run_example(image, text_input=None, model_id="mateoluksenberg/Qwen-modelo-im
97
  )
98
 
99
  "---------------"
100
- from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
101
- from qwen_vl_utils import process_vision_info
102
-
103
- # default: Load the model on the available device(s)
104
- model = Qwen2VLForConditionalGeneration.from_pretrained(
105
- "mateoluksenberg/Qwen-modelo-image", torch_dtype="auto", device_map="auto"
106
- )
107
-
108
- # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
109
- # model = Qwen2VLForConditionalGeneration.from_pretrained(
110
- # "Qwen/Qwen2-VL-2B-Instruct",
111
- # torch_dtype=torch.bfloat16,
112
- # attn_implementation="flash_attention_2",
113
- # device_map="auto",
114
- # )
115
-
116
- # default processer
117
- processor = AutoProcessor.from_pretrained("mateoluksenberg/Qwen-modelo-image")
118
-
119
- # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
120
- # min_pixels = 256*28*28
121
- # max_pixels = 1280*28*28
122
- # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
123
-
124
- messages = [
125
- {
126
- "role": "user",
127
- "content": [
128
- {
129
- "type": "image",
130
- "image": image_path,
131
- },
132
- {"type": "text", "text": "Describe this image."},
133
- ],
134
- }
135
- ]
136
-
137
- # Preparation for inference
138
- text = processor.apply_chat_template(
139
- messages, tokenize=False, add_generation_prompt=True
140
- )
141
- image_inputs, video_inputs = process_vision_info(messages)
142
- inputs = processor(
143
- text=[text],
144
- images=image_inputs,
145
- videos=video_inputs,
146
- padding=True,
147
- return_tensors="pt",
148
- )
149
- inputs = inputs.to("cuda")
150
-
151
- # Inference: Generation of the output
152
- generated_ids = model.generate(**inputs, max_new_tokens=128)
153
- generated_ids_trimmed = [
154
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
155
- ]
156
- output_text = processor.batch_decode(
157
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
158
- )
159
  print(output_text)
160
  "---------------"
161
 
 
97
  )
98
 
99
  "---------------"
100
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  print(output_text)
102
  "---------------"
103