Spaces:
Sleeping
Sleeping
File size: 4,810 Bytes
9be878d 9766d09 e93af3d 9766d09 5e501c7 9ebaa7e 9766d09 e65e5d4 6fac63c 0f5132d e65e5d4 543a677 0f5132d e65e5d4 5455ee9 cf77319 d210fff e93af3d 9766d09 9be878d d544e23 9be878d c23eb1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
#from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
import streamlit as st
from streamlit_chat import message
from PIL import Image
st.title("Nexus TCM Chatbot")
#query = st.text_input("Query: ", key="input")
def clear_query_on_change():
# Your logic for processing the query and generating a response goes here
response = f"User entered: {st.session_state.input}"
st.write(response)
# Create the search bar with on_change event
query = st.text_input("Query:", key="input", on_change=clear_query_on_change)
# Check if the user has entered a new query
if 'input' in st.session_state:
# Clear the input after processing
st.session_state.input = ""
# Set the logo URL
#logo_url = "https://huggingface.co/spaces/mathslearn/chatbot_test_streamlit/blob/main/logo.jpeg"
logo_url = "https://huggingface.co/spaces/mathslearn/chatbot_test_streamlit/resolve/main/logo.jpeg"
# Set the desired logo height
logo_height = 25
# Display the logo with adjusted column width
#st.image(logo_url, caption="Nexus TCM Chatbot Logo", use_column_width=True)
#st.image(logo_url, use_column_width=True)
st.sidebar.image(logo_url, caption="Disclaimer: The chatbot is not a substitute for medical advice from a qualified healthcare professional.", use_column_width=True)
if 'responses' not in st.session_state:
st.session_state['responses'] = []
if 'requests' not in st.session_state:
st.session_state['requests'] = []
#REPO_ID = "Xenova/gpt-3.5-turbo"
# Load the model and tokenizer from Hugging Face's model hub
#model = AutoModelForCausalLM.from_pretrained(REPO_ID)
#tokenizer = AutoTokenizer.from_pretrained(REPO_ID)
#llm = ChatOpenAI(model=model, tokenizer=tokenizer)
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key="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")
# Initialize global variable for conversation memory
if 'buffer_memory' not in st.session_state:
st.session_state.buffer_memory= ConversationBufferWindowMemory(k=8)
#st.session_state.buffer_memory= ConversationBufferWindowMemory(k=3)
conversation = ConversationChain(
llm=llm,
memory=st.session_state.buffer_memory,
verbose=True
)
context = """
You act as a chatbot to interact with users on their questions about traditional chinese medicine (TCM). \
Welcome the user in a friendly way.
You respond in a short and friendly style. \
For each text, mark NER tags. \
Tag categories: location, product. \
Text: I want to visit a clinic in [Ang Mo Kio](location). \
If a user says he/she wants to visit a traditional chinese medicine (TCM) clinic, \
ask for which location he/she wants to visit. \
After user replies with location, show in chat window the Google Map from this link \
https://www.google.com/maps/search/tcm+clinics+at+location+name \
For example, if a user wants to visit a clinic in Ang Mo Kio, \
show in chat window the Google Map from this link \
https://www.google.com/maps/search/tcm+clinics+at+ang+mo+kio \
Examoples of location names:
North:
Sembawang
Woodlands
Yishun
North-East:
Ang Mo Kio
Hougang
Punggol
Sengkang
Serangoon
East:
Bedok
Pasir Ris
Tampines
West:
Bukit Batok
Bukit Panjang
Choa Chu Kang
Clementi
Jurong East
Jurong West
Tengah
Central:
Bishan
Bukit Merah
Bukit Timah
Central Area
Geylang
Kallang
Whampoa
Marine Parade
Queenstown
Toa Payoh
For each text, mark NER tags. \
Tag categories: location, product. \
Text: I want to buy/get [Po Chai Pills](product). \
If a user wants to buy/get a product, suggest that \
he/she can consider buying/getting from https://www.amazon.sg/s?k=product+name \
For example, if a user wants to buy Po Chai Pills, suggest \
he/she can consider buying/getting from https://www.amazon.sg/s?k=po+chai+pills \
Examples of product names:
Ointment/Hong You/Feng You/Fengyou
Liquorice/Gan cao/Gancao
Chrysanthemum/Ju hua/Juhua
Goji berry/wolfberry/Gou Qi Zi/Gouqizi
Red dates/Jujubes/Hong Zao/Hongzao
"""
prompt_template = PromptTemplate.from_template(
'''system role :{context} \
user:{query}\
assistance:
''')
# Define Streamlit Interface
if query:
formatquery= prompt_template.format(context=context, query=query)
response = conversation.run(formatquery)
st.session_state.requests.append(query)
st.session_state.responses.append(response)
if st.session_state['responses']:
for i in range(len(st.session_state['responses'])-1, -1, -1):
message(st.session_state['requests'][i], is_user=True, key=str(i) + '_user')
message(st.session_state["responses"][i], key=str(i))
# gr.load("models/ksh-nyp/llama-2-7b-chat-TCMKB").launch() |