File size: 2,666 Bytes
5b04582
7d51224
 
 
1044c29
7d51224
 
 
46a444c
 
5b04582
 
f116849
dceb191
1044c29
 
dceb191
7d51224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f94f0
 
3366fc4
86f94f0
 
 
 
 
 
 
 
 
5b04582
46a444c
 
 
 
 
5b04582
 
1884418
 
 
5b04582
 
 
7d51224
5b04582
8b67d79
5b04582
8b67d79
5b04582
 
 
0d521c3
1044c29
4ebc12a
 
7d51224
0d521c3
7d51224
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from typing import List
import fastapi
import markdown
import uvicorn
from ctransformers import AutoModelForCausalLM
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel, Field
from typing_extensions import Literal
from dialogue import DialogueTemplate

llm = AutoModelForCausalLM.from_pretrained("TheBloke/starchat-beta-GGML",
                                           model_file="starchat-beta.ggmlv3.q4_0.bin",
                                           model_type="starcoder")

app = fastapi.FastAPI(title="Starchat Beta")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
async def index():
    with open("README.md", "r", encoding="utf-8") as readme_file:
        md_template_string = readme_file.read()
    html_content = markdown.markdown(md_template_string)
    return HTMLResponse(content=html_content, status_code=200)


@app.get("/stream")
async def chat(prompt = "<|user|> Write an express server with server sent events. <|assistant|>"):
    tokens = llm.tokenize(prompt)
    async def server_sent_events(chat_chunks, llm):
        yield prompt
        for chat_chunk in llm.generate(chat_chunks):
            yield llm.detokenize(chat_chunk)
        yield ""

    return EventSourceResponse(server_sent_events(tokens, llm))


class ChatCompletionRequestMessage(BaseModel):
    role: Literal["system", "user", "assistant"] = Field(
        default="user", description="The role of the message."
    )
    content: str = Field(default="", description="The content of the message.")

class ChatCompletionRequest(BaseModel):
    messages: List[ChatCompletionRequestMessage] = Field(
        default=[], description="A list of messages to generate completions for."
    )

system_message = "Below is a conversation between a human user and a helpful AI coding assistant."

@app.post("/v1/chat/completions")
async def chat(request: ChatCompletionRequest, response_mode=None):
    kwargs = request.dict()
    dialogue_template = DialogueTemplate(
        system=system_message, messages=kwargs['messages']
    )
    prompt = dialogue_template.get_inference_prompt()
    tokens = llm.tokenize(prompt)
    async def server_sent_events(chat_chunks, llm):
        for token in llm.generate(chat_chunks):
            yield dict(data=llm.detokenize(token))
        yield dict(data="[DONE]")

    return EventSourceResponse(server_sent_events(tokens, llm))

if __name__ == "__main__":
  uvicorn.run(app, host="0.0.0.0", port=8000)