Spaces:
Paused
Paused
File size: 2,666 Bytes
5b04582 7d51224 1044c29 7d51224 46a444c 5b04582 f116849 dceb191 1044c29 dceb191 7d51224 86f94f0 3366fc4 86f94f0 5b04582 46a444c 5b04582 1884418 5b04582 7d51224 5b04582 8b67d79 5b04582 8b67d79 5b04582 0d521c3 1044c29 4ebc12a 7d51224 0d521c3 7d51224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
from typing import List
import fastapi
import markdown
import uvicorn
from ctransformers import AutoModelForCausalLM
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel, Field
from typing_extensions import Literal
from dialogue import DialogueTemplate
llm = AutoModelForCausalLM.from_pretrained("TheBloke/starchat-beta-GGML",
model_file="starchat-beta.ggmlv3.q4_0.bin",
model_type="starcoder")
app = fastapi.FastAPI(title="Starchat Beta")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def index():
with open("README.md", "r", encoding="utf-8") as readme_file:
md_template_string = readme_file.read()
html_content = markdown.markdown(md_template_string)
return HTMLResponse(content=html_content, status_code=200)
@app.get("/stream")
async def chat(prompt = "<|user|> Write an express server with server sent events. <|assistant|>"):
tokens = llm.tokenize(prompt)
async def server_sent_events(chat_chunks, llm):
yield prompt
for chat_chunk in llm.generate(chat_chunks):
yield llm.detokenize(chat_chunk)
yield ""
return EventSourceResponse(server_sent_events(tokens, llm))
class ChatCompletionRequestMessage(BaseModel):
role: Literal["system", "user", "assistant"] = Field(
default="user", description="The role of the message."
)
content: str = Field(default="", description="The content of the message.")
class ChatCompletionRequest(BaseModel):
messages: List[ChatCompletionRequestMessage] = Field(
default=[], description="A list of messages to generate completions for."
)
system_message = "Below is a conversation between a human user and a helpful AI coding assistant."
@app.post("/v1/chat/completions")
async def chat(request: ChatCompletionRequest, response_mode=None):
kwargs = request.dict()
dialogue_template = DialogueTemplate(
system=system_message, messages=kwargs['messages']
)
prompt = dialogue_template.get_inference_prompt()
tokens = llm.tokenize(prompt)
async def server_sent_events(chat_chunks, llm):
for token in llm.generate(chat_chunks):
yield dict(data=llm.detokenize(token))
yield dict(data="[DONE]")
return EventSourceResponse(server_sent_events(tokens, llm))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|