File size: 5,491 Bytes
5b04582
7d51224
 
 
1044c29
7d51224
 
 
46a444c
 
5b04582
 
c3fd9b2
1044c29
 
 
 
7d51224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f94f0
 
 
 
 
 
b7ec1ef
e3277b6
b7ec1ef
86f94f0
6218ec6
e3277b6
 
 
b7ec1ef
e3277b6
 
 
 
 
 
3151c18
7d973d2
6218ec6
 
 
 
 
7d973d2
6218ec6
 
7d973d2
6218ec6
 
 
 
e3277b6
 
 
b7ec1ef
86f94f0
e3277b6
86f94f0
e3277b6
86f94f0
e3277b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f94f0
 
 
 
 
 
 
 
 
3366fc4
86f94f0
 
 
 
 
 
 
 
 
5b04582
46a444c
 
 
 
 
5b04582
 
1884418
 
 
5b04582
 
 
7d51224
5b04582
8b67d79
5b04582
8b67d79
5b04582
 
 
0d521c3
1044c29
 
86f94f0
7d51224
0d521c3
7d51224
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from typing import List
import fastapi
import markdown
import uvicorn
from ctransformers import AutoModelForCausalLM
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel, Field
from typing_extensions import Literal
from dialogue import DialogueTemplate

llm = AutoModelForCausalLM.from_pretrained("NeoDim/starchat-alpha-GGML",
                                           model_file="starchat-alpha-ggml-q4_0.bin",
                                           model_type="starcoder")

app = fastapi.FastAPI(title="Starchat Alpha")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
async def index():
    with open("README.md", "r", encoding="utf-8") as readme_file:
        md_template_string = readme_file.read()
    html_content = markdown.markdown(md_template_string)
    return HTMLResponse(content=html_content, status_code=200)


@app.get("/demo")
async def demo():
    html_content = """
    <!DOCTYPE html>
    <html>
        <head>
            <script src="https://cdnjs.cloudflare.com/ajax/libs/showdown/1.9.1/showdown.min.js"></script>
        </head>
        <body>
            <style>
                body {
                    font-family: -apple-system,BlinkMacSystemFont,"Segoe UI",Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";
                }
                code {
                    font-family: "SFMono-Regular",Consolas,"Liberation Mono",Menlo,Courier,monospace !important;
                    display: inline-block;
                    background-color: lightgray;
                }
                h1 h2 h3 h4 h5 h6 {
                    font-family: Roboto,-apple-system,BlinkMacSystemFont,"Helvetica Neue","Segoe UI","Oxygen","Ubuntu","Cantarell","Open Sans",sans-serif;
                }
            	#content {
            		box-sizing: border-box;
            		min-width: 200px;
            		max-width: 980px;
            		margin: 0 auto;
            		padding: 45px;
                    font-size: 16px;
            	}
            	@media (max-width: 767px) {
            		#content {
            			padding: 15px;
            		}
            	}
            </style>
            
            <script type="module" src="https://cdn.skypack.dev/@vanillawc/wc-markdown"></script>
            <wc-markdown id="content" highlight><h1>starchat-alpha-q4.0</h1></wc-markdown>
            
            <script>
              var converter = new showdown.Converter();
              var source = new EventSource("https://matthoffner-starchat-alpha.hf.space/stream");
              let eventCache;
              source.onmessage = function(event) {
                let eventData = event.data;
                console.log(eventData);
                if (eventData.includes("```")) {
                    eventCache = true;
                    return;
                }
                if (eventCache && !eventData.includes("```")) {
                    backticks = "```";
                    eventData = `${backticks}${eventData}<br /><code>`;
                    eventCache = false;
                }
                if (eventData === ":") {
                    eventData = `${eventData}<br />`;
                }
                if (eventData === "<|assistant|>") {
                    eventData = `<br />${eventData}`;
                }
                if (eventData === "<|end|>") {
                    eventData = "<br />";
                }                
                document.getElementById("content").innerHTML = document.getElementById("content").innerHTML + eventData;
              };
            </script>
        
        </body>
    </html>
    """
    return HTMLResponse(content=html_content, status_code=200)

@app.get("/stream")
async def chat(prompt = "<|user|> Write an express server with server sent events. <|assistant|>"):
    tokens = llm.tokenize(prompt)
    async def server_sent_events(chat_chunks, llm):
        yield prompt
        for chat_chunk in llm.generate(chat_chunks):
            yield llm.detokenize(chat_chunk)
        yield ""

    return EventSourceResponse(server_sent_events(tokens, llm))


class ChatCompletionRequestMessage(BaseModel):
    role: Literal["system", "user", "assistant"] = Field(
        default="user", description="The role of the message."
    )
    content: str = Field(default="", description="The content of the message.")

class ChatCompletionRequest(BaseModel):
    messages: List[ChatCompletionRequestMessage] = Field(
        default=[], description="A list of messages to generate completions for."
    )

system_message = "Below is a conversation between a human user and a helpful AI coding assistant."

@app.post("/v1/chat/completions")
async def chat(request: ChatCompletionRequest, response_mode=None):
    kwargs = request.dict()
    dialogue_template = DialogueTemplate(
        system=system_message, messages=kwargs['messages']
    )
    prompt = dialogue_template.get_inference_prompt()
    tokens = llm.tokenize(prompt)
    async def server_sent_events(chat_chunks, llm):
        for token in llm.generate(chat_chunks):
            yield llm.detokenize(token)
        yield ""

    return EventSourceResponse(server_sent_events(tokens, llm))

if __name__ == "__main__":
  uvicorn.run(app, host="0.0.0.0", port=8000)