starchat-ggml / main.py
matt HOFFNER
chat completions
5b04582
raw
history blame
5.12 kB
from typing import List
import fastapi
import markdown
import uvicorn
from ctransformers import AutoModelForCausalLM
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel
from dialogue import DialogueTemplate
llm = AutoModelForCausalLM.from_pretrained("NeoDim/starchat-alpha-GGML",
model_file="starchat-alpha-ggml-q4_0.bin",
model_type="starcoder")
app = fastapi.FastAPI(title="Starchat Alpha")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def index():
with open("README.md", "r", encoding="utf-8") as readme_file:
md_template_string = readme_file.read()
html_content = markdown.markdown(md_template_string)
return HTMLResponse(content=html_content, status_code=200)
@app.get("/demo")
async def demo():
html_content = """
<!DOCTYPE html>
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/showdown/1.9.1/showdown.min.js"></script>
</head>
<body>
<style>
body {
font-family: -apple-system,BlinkMacSystemFont,"Segoe UI",Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";
}
code {
font-family: "SFMono-Regular",Consolas,"Liberation Mono",Menlo,Courier,monospace !important;
display: inline-block;
background-color: lightgray;
}
h1 h2 h3 h4 h5 h6 {
font-family: Roboto,-apple-system,BlinkMacSystemFont,"Helvetica Neue","Segoe UI","Oxygen","Ubuntu","Cantarell","Open Sans",sans-serif;
}
#content {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
font-size: 16px;
}
@media (max-width: 767px) {
#content {
padding: 15px;
}
}
</style>
<script type="module" src="https://cdn.skypack.dev/@vanillawc/wc-markdown"></script>
<wc-markdown id="content" highlight><h1>starchat-alpha-q4.0</h1></wc-markdown>
<script>
var converter = new showdown.Converter();
var source = new EventSource("https://matthoffner-starchat-alpha.hf.space/stream");
let eventCache;
source.onmessage = function(event) {
let eventData = event.data;
console.log(eventData);
if (eventData.includes("```")) {
eventCache = true;
return;
}
if (eventCache && !eventData.includes("```")) {
backticks = "```";
eventData = `${backticks}${eventData}<br /><code>`;
eventCache = false;
}
if (eventData === ":") {
eventData = `${eventData}<br />`;
}
if (eventData === "<|assistant|>") {
eventData = `<br />${eventData}`;
}
if (eventData === "<|end|>") {
eventData = "<br />";
}
document.getElementById("content").innerHTML = document.getElementById("content").innerHTML + eventData;
};
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content, status_code=200)
@app.get("/stream")
async def chat(prompt = "<|user|> Write an express server with server sent events. <|assistant|>"):
tokens = llm.tokenize(prompt)
async def server_sent_events(chat_chunks, llm):
yield prompt
for chat_chunk in llm.generate(chat_chunks):
yield llm.detokenize(chat_chunk)
yield ""
return EventSourceResponse(server_sent_events(tokens, llm))
class ChatCompletion(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
messages: List[ChatCompletion]
system_message = "Below is a conversation between a human user and a helpful AI coding assistant."
@app.post("/v1/chat/completions")
async def chat(request: ChatCompletionRequest, response_mode=None):
dialogue_template = DialogueTemplate(
system=system_message, messages=[request.messages]
)
prompt = dialogue_template.get_inference_prompt()
tokens = llm.tokenize(prompt)
async def server_sent_events(chat_chunks, llm):
for token in llm.generate(chat_chunks):
yield llm.detokenize(token)
yield ""
return EventSourceResponse(server_sent_events(tokens, llm))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)