starchat-ggml / main.py
matthoffner's picture
Update main.py
a7653ed
raw
history blame
1.95 kB
import fastapi
import json
import markdown
import uvicorn
from ctransformers import AutoModelForCausalLM
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from sse_starlette.sse import EventSourceResponse
from ctransformers.langchain import CTransformers
from pydantic import BaseModel
from typing import List, Any
from typing_extensions import TypedDict, Literal
llm = AutoModelForCausalLM.from_pretrained("NeoDim/starchat-alpha-GGML",
model_file="starchat-alpha-ggml-q4_0.bin",
model_type="starcoder")
app = fastapi.FastAPI(title="Starchat Alpha")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def index():
with open("README.md", "r", encoding="utf-8") as readme_file:
md_template_string = readme_file.read()
html_content = markdown.markdown(md_template_string)
return HTMLResponse(content=html_content, status_code=200)
class ChatCompletionRequestMessage(BaseModel):
role: Literal["system", "user", "assistant"] = Field(
default="user", description="The role of the message."
)
content: str = Field(default="", description="The content of the message.")
class ChatCompletionRequest(BaseModel):
messages: List[ChatCompletionRequestMessage] = Field(
default=[], description="A list of messages to generate completions for."
)
@app.post("/v1/chat/completions")
async def chat(request: ChatCompletionRequest, response_mode=None):
tokens = llm.tokenize(request.messages)
async def server_sent_events(chat_chunks):
for token in llm.generate(chat_chunks):
yield llm.detokenize(token)
return EventSourceResponse(server_sent_events(tokens))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)