import gradio as gr import numpy as np import torch from PIL import Image, ImageDraw import requests from transformers import SamModel, SamProcessor import cv2 device = "cuda" if torch.cuda.is_available() else "cpu" # Load model and processor model = SamModel.from_pretrained("facebook/sam-vit-base").to(device) processor = SamProcessor.from_pretrained("facebook/sam-vit-base") def mask_2_dots(mask): gray = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY) _, thresh = cv2.threshold(gray, 127, 255, 0) kernel = np.ones((5,5),np.uint8) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) contours, _ = cv2.findContours(closed, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) points = [] for contour in contours: moments = cv2.moments(contour) cx = int(moments['m10']/moments['m00']) cy = int(moments['m01']/moments['m00']) points.append([cx, cy]) return [points] def main_func(inputs): dots = inputs['mask'] points = mask_2_dots(dots) image_input = inputs['image'] image_input = Image.fromarray(image_input) inputs = processor(image_input, input_points=points, return_tensors="pt").to(device) # Forward pass outputs = model(**inputs) # Postprocess outputs draw = ImageDraw.Draw(image_input) for point in points[0]: draw.ellipse((point[0] - 10, point[1] - 10, point[0] + 10, point[1] + 10), fill="red") masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) #scores = outputs.iou_scores mask = masks[0].squeeze(0).numpy().transpose(1, 2, 0) pred_masks = [image_input] for i in range(mask.shape[2]): #mask[:,:,i] = mask[:,:,i] * scores[0][i].item() pred_masks.append(Image.fromarray((mask[:,:,i] * 255).astype(np.uint8))) return pred_masks with gr.Blocks() as demo: gr.Markdown("# Demo to run Segment Anything base model") gr.Markdown("""This app uses the [Segment Anything](https://huggingface.co/facebook/sam-vit-base) model from Meta to get a mask from a points in an image. Currently it only works for creating dots for one object. But, I'm planning to add extra features to make it work for multiple objects. The output shows the image with the dots then the 3 predicted masks. """) with gr.Tab("Flip Image"): with gr.Row(): image_input = gr.Image(tool='sketch') image_output = gr.Gallery() image_button = gr.Button("Segment Image") image_button.click(main_func, inputs=image_input, outputs=image_output) demo.launch()