import gradio as gr import PIL.Image import transformers from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import torch import os import string import functools import re import flax.linen as nn import jax import jax.numpy as jnp import numpy as np import spaces model_id = "mattraj/curacel-transcription-1" COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device) processor = PaliGemmaProcessor.from_pretrained(model_id) def resize_and_pad(image, target_dim): # Calculate the aspect ratio scale_factor = 1 aspect_ratio = image.width / image.height if aspect_ratio > 1: # Width is greater than height new_width = int(target_dim * scale_factor) new_height = int((target_dim / aspect_ratio) * scale_factor) else: # Height is greater than width new_height = int(target_dim * scale_factor) new_width = int(target_dim * aspect_ratio * scale_factor) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Create a new image with the target dimensions and a white background new_image = Image.new("RGB", (target_dim, target_dim), (255, 255, 255)) new_image.paste(resized_image, ((target_dim - new_width) // 2, (target_dim - new_height) // 2)) return new_image ###### Transformers Inference @spaces.GPU def infer( image: PIL.Image.Image, text: str, max_new_tokens: int ) -> str: inputs = processor(text=text, images=resize_and_pad(image), return_tensors="pt").to(device) with torch.inference_mode(): generated_ids = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=False ) result = processor.batch_decode(generated_ids, skip_special_tokens=True) return result[0][len(text):].lstrip("\n") ##### Parse segmentation output tokens into masks ##### Also returns bounding boxes with their labels def parse_segmentation(input_image, input_text): out = infer(input_image, input_text, max_new_tokens=100) objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True) labels = set(obj.get('name') for obj in objs if obj.get('name')) color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)} highlighted_text = [(obj['content'], obj.get('name')) for obj in objs] annotated_img = ( input_image, [ ( obj['mask'] if obj.get('mask') is not None else obj['xyxy'], obj['name'] or '', ) for obj in objs if 'mask' in obj or 'xyxy' in obj ], ) has_annotations = bool(annotated_img[1]) return annotated_img ######## Demo INTRO_TEXT = """## Curacel Handwritten Arabic demo\n\n Finetuned from: google/paligemma-3b-pt-448 Translation model demo at: https://prod.arabic-gpt.ai/ Prompts: Translate the Arabic to English: {model output} The following is a diagnosis in Arabic from a medical billing form we need to translate to English. The transcriber is not necessariily accurate so one or more characters or words may be wrong. Given what is written, what is the most likely diagnosis. Think step by step, and think about similar words or mispellings in Arabic. Give multiple arabic diagnoses along with the translation in English for each, then finally select the diagnosis that makes the most sense given what was transcribed and print the English translation as your most likely final translation. Transcribed text: {model output} """ with gr.Blocks(css="style.css") as demo: gr.Markdown(INTRO_TEXT) with gr.Tab("Text Generation"): with gr.Column(): image = gr.Image(type="pil") text_input = gr.Text(label="Input Text") text_output = gr.Text(label="Text Output") chat_btn = gr.Button() tokens = gr.Slider( label="Max New Tokens", info="Set to larger for longer generation.", minimum=10, maximum=100, value=20, step=10, ) chat_inputs = [ image, text_input, tokens ] chat_outputs = [ text_output ] chat_btn.click( fn=infer, inputs=chat_inputs, outputs=chat_outputs, ) examples = [["./diagnosis-1.jpg", "Transcribe the Arabic text."], ["./examples/sign.jpg", "Transcribe the Arabic text."]] gr.Markdown("") gr.Examples( examples=examples, inputs=chat_inputs, ) ''' with gr.Tab("Segment/Detect"): image = gr.Image(type="pil") seg_input = gr.Text(label="Entities to Segment/Detect") seg_btn = gr.Button("Submit") annotated_image = gr.AnnotatedImage(label="Output") examples = [["./diagnosis-1.jpg", "Transcribe the Arabic text."], ["./examples/sign.jpg", "Transcribe the Arabic text."]] gr.Markdown( "") gr.Examples( examples=examples, inputs=[image, seg_input], ) seg_inputs = [ image, seg_input ] seg_outputs = [ annotated_image ] seg_btn.click( fn=parse_segmentation, inputs=seg_inputs, outputs=seg_outputs, ) ''' ### Postprocessing Utils for Segmentation Tokens ### Segmentation tokens are passed to another VAE which decodes them to a mask _MODEL_PATH = 'vae-oid.npz' _SEGMENT_DETECT_RE = re.compile( r'(.*?)' + r'' * 4 + r'\s*' + '(?:%s)?' % (r'' * 16) + r'\s*([^;<>]+)? ?(?:; )?', ) def _get_params(checkpoint): """Converts PyTorch checkpoint to Flax params.""" def transp(kernel): return np.transpose(kernel, (2, 3, 1, 0)) def conv(name): return { 'bias': checkpoint[name + '.bias'], 'kernel': transp(checkpoint[name + '.weight']), } def resblock(name): return { 'Conv_0': conv(name + '.0'), 'Conv_1': conv(name + '.2'), 'Conv_2': conv(name + '.4'), } return { '_embeddings': checkpoint['_vq_vae._embedding'], 'Conv_0': conv('decoder.0'), 'ResBlock_0': resblock('decoder.2.net'), 'ResBlock_1': resblock('decoder.3.net'), 'ConvTranspose_0': conv('decoder.4'), 'ConvTranspose_1': conv('decoder.6'), 'ConvTranspose_2': conv('decoder.8'), 'ConvTranspose_3': conv('decoder.10'), 'Conv_1': conv('decoder.12'), } def _quantized_values_from_codebook_indices(codebook_indices, embeddings): batch_size, num_tokens = codebook_indices.shape assert num_tokens == 16, codebook_indices.shape unused_num_embeddings, embedding_dim = embeddings.shape encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) return encodings @functools.cache def _get_reconstruct_masks(): """Reconstructs masks from codebook indices. Returns: A function that expects indices shaped `[B, 16]` of dtype int32, each ranging from 0 to 127 (inclusive), and that returns a decoded masks sized `[B, 64, 64, 1]`, of dtype float32, in range [-1, 1]. """ class ResBlock(nn.Module): features: int @nn.compact def __call__(self, x): original_x = x x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) x = nn.relu(x) x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) x = nn.relu(x) x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x) return x + original_x class Decoder(nn.Module): """Upscales quantized vectors to mask.""" @nn.compact def __call__(self, x): num_res_blocks = 2 dim = 128 num_upsample_layers = 4 x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x) x = nn.relu(x) for _ in range(num_res_blocks): x = ResBlock(features=dim)(x) for _ in range(num_upsample_layers): x = nn.ConvTranspose( features=dim, kernel_size=(4, 4), strides=(2, 2), padding=2, transpose_kernel=True, )(x) x = nn.relu(x) dim //= 2 x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x) return x def reconstruct_masks(codebook_indices): quantized = _quantized_values_from_codebook_indices( codebook_indices, params['_embeddings'] ) return Decoder().apply({'params': params}, quantized) with open(_MODEL_PATH, 'rb') as f: params = _get_params(dict(np.load(f))) return jax.jit(reconstruct_masks, backend='cpu') def extract_objs(text, width, height, unique_labels=False): """Returns objs for a string with "" and "" tokens.""" objs = [] seen = set() while text: m = _SEGMENT_DETECT_RE.match(text) if not m: break print("m", m) gs = list(m.groups()) before = gs.pop(0) name = gs.pop() y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] y1, x1, y2, x2 = map(round, (y1 * height, x1 * width, y2 * height, x2 * width)) seg_indices = gs[4:20] if seg_indices[0] is None: mask = None else: seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) mask = np.zeros([height, width]) if y2 > y1 and x2 > x1: mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 content = m.group() if before: objs.append(dict(content=before)) content = content[len(before):] while unique_labels and name in seen: name = (name or '') + "'" seen.add(name) objs.append(dict( content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) text = text[len(before) + len(content):] if text: objs.append(dict(content=text)) return objs ######### if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)