Spaces:
Sleeping
Sleeping
mattritchey
commited on
Commit
•
6b55779
1
Parent(s):
c2b6805
Upload 2 files
Browse files- app.py +157 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Thu Jun 8 03:39:02 2023
|
4 |
+
|
5 |
+
@author: mritchey
|
6 |
+
"""
|
7 |
+
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\hail\hail all.py"
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
import streamlit as st
|
12 |
+
from geopy.extra.rate_limiter import RateLimiter
|
13 |
+
from geopy.geocoders import Nominatim
|
14 |
+
import folium
|
15 |
+
from streamlit_folium import st_folium
|
16 |
+
from vincenty import vincenty
|
17 |
+
import duckdb
|
18 |
+
|
19 |
+
st.set_page_config(layout="wide")
|
20 |
+
|
21 |
+
|
22 |
+
@st.cache_data
|
23 |
+
def convert_df(df):
|
24 |
+
return df.to_csv(index=0).encode('utf-8')
|
25 |
+
|
26 |
+
|
27 |
+
def duck_sql(sql_code):
|
28 |
+
con = duckdb.connect()
|
29 |
+
con.execute("PRAGMA threads=2")
|
30 |
+
con.execute("PRAGMA enable_object_cache")
|
31 |
+
return con.execute(sql_code).df()
|
32 |
+
|
33 |
+
|
34 |
+
def get_data(lat, lon, date_str):
|
35 |
+
code = f"""
|
36 |
+
select "#ZTIME" as "Date_utc", LON, LAT, MAXSIZE
|
37 |
+
from
|
38 |
+
'data/*.parquet'
|
39 |
+
where LAT<={lat}+1 and LAT>={lat}-1
|
40 |
+
and LON<={lon}+1 and LON>={lon}-1
|
41 |
+
and "#ZTIME"<={date_str}
|
42 |
+
|
43 |
+
"""
|
44 |
+
duck_sql(code)
|
45 |
+
return duck_sql(code)
|
46 |
+
|
47 |
+
|
48 |
+
def map_perimeters(address, lat, lon):
|
49 |
+
|
50 |
+
m = folium.Map(location=[lat, lon],
|
51 |
+
|
52 |
+
zoom_start=6,
|
53 |
+
height=400)
|
54 |
+
folium.Marker(
|
55 |
+
location=[lat, lon],
|
56 |
+
tooltip=f'Address: {address}',
|
57 |
+
).add_to(m)
|
58 |
+
|
59 |
+
return m
|
60 |
+
|
61 |
+
|
62 |
+
def distance(x):
|
63 |
+
left_coords = (x[0], x[1])
|
64 |
+
right_coords = (x[2], x[3])
|
65 |
+
return vincenty(left_coords, right_coords, miles=True)
|
66 |
+
|
67 |
+
|
68 |
+
def geocode(address):
|
69 |
+
try:
|
70 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
71 |
+
df = pd.read_json(
|
72 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
73 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
74 |
+
lat, lon = results['y'], results['x']
|
75 |
+
except:
|
76 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
77 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
78 |
+
location = geolocator.geocode(address)
|
79 |
+
lat, lon = location.latitude, location.longitude
|
80 |
+
return lat, lon
|
81 |
+
|
82 |
+
|
83 |
+
#Side Bar
|
84 |
+
address = st.sidebar.text_input(
|
85 |
+
"Address", "Dallas, TX")
|
86 |
+
date = st.sidebar.date_input(
|
87 |
+
"Loss Date", pd.Timestamp(2023, 7, 14), key='date')
|
88 |
+
date_str = date.strftime("%Y%m%d")
|
89 |
+
|
90 |
+
#Geocode Addreses
|
91 |
+
lat, lon = geocode(address)
|
92 |
+
|
93 |
+
#Filter Data
|
94 |
+
df_hail_cut = get_data(lat, lon, date_str)
|
95 |
+
|
96 |
+
|
97 |
+
df_hail_cut["Lat_address"] = lat
|
98 |
+
df_hail_cut["Lon_address"] = lon
|
99 |
+
df_hail_cut['Miles to Hail'] = [
|
100 |
+
distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
|
101 |
+
df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(1)
|
102 |
+
|
103 |
+
df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
|
104 |
+
df_hail_cut['Category'] = np.where(df_hail_cut['Miles to Hail'] < .25, "At Location",
|
105 |
+
np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
|
106 |
+
np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
|
107 |
+
np.where(df_hail_cut['Miles to Hail'] < 10, "Within 10 Miles", 'Other'))))
|
108 |
+
|
109 |
+
df_hail_cut_group = pd.pivot_table(df_hail_cut, index='Date_utc',
|
110 |
+
columns='Category',
|
111 |
+
values='MAXSIZE',
|
112 |
+
aggfunc='max')
|
113 |
+
|
114 |
+
cols = df_hail_cut_group.columns
|
115 |
+
cols_focus = ['At Location', "Within 1 Mile",
|
116 |
+
"Within 3 Miles", "Within 10 Miles"]
|
117 |
+
|
118 |
+
missing_cols = set(cols_focus)-set(cols)
|
119 |
+
for c in missing_cols:
|
120 |
+
df_hail_cut_group[c] = np.nan
|
121 |
+
|
122 |
+
df_hail_cut_group2 = df_hail_cut_group[cols_focus].query(
|
123 |
+
"`Within 3 Miles`==`Within 3 Miles`")
|
124 |
+
|
125 |
+
for i in range(3):
|
126 |
+
df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
|
127 |
+
df_hail_cut_group2[cols_focus[i]].fillna(
|
128 |
+
0),
|
129 |
+
df_hail_cut_group2[cols_focus[i]],
|
130 |
+
df_hail_cut_group2[cols_focus[i+1]])
|
131 |
+
|
132 |
+
|
133 |
+
df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)
|
134 |
+
|
135 |
+
df_hail_cut_group2.index = pd.to_datetime(
|
136 |
+
df_hail_cut_group2.index, format='%Y%m%d').strftime("%Y-%m-%d")
|
137 |
+
|
138 |
+
|
139 |
+
#Map Data
|
140 |
+
m = map_perimeters(address, lat, lon)
|
141 |
+
|
142 |
+
#Display
|
143 |
+
col1, col2 = st.columns((3, 2))
|
144 |
+
|
145 |
+
with col1:
|
146 |
+
st.header('Estimated Maximum Hail Size')
|
147 |
+
st.write('Data from 2010 to 2023-09-24')
|
148 |
+
df_hail_cut_group2
|
149 |
+
csv2 = convert_df(df_hail_cut_group2.reset_index())
|
150 |
+
st.download_button(
|
151 |
+
label="Download data as CSV",
|
152 |
+
data=csv2,
|
153 |
+
file_name=f'{address}_{date_str}.csv',
|
154 |
+
mime='text/csv')
|
155 |
+
with col2:
|
156 |
+
st.header('Map')
|
157 |
+
st_folium(m, height=400)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
folium
|
2 |
+
geopy
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
streamlit
|
6 |
+
streamlit_folium
|
7 |
+
vincenty
|
8 |
+
duckdb
|