mattritchey commited on
Commit
6b55779
1 Parent(s): c2b6805

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +157 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Thu Jun 8 03:39:02 2023
4
+
5
+ @author: mritchey
6
+ """
7
+ # streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\hail\hail all.py"
8
+
9
+ import pandas as pd
10
+ import numpy as np
11
+ import streamlit as st
12
+ from geopy.extra.rate_limiter import RateLimiter
13
+ from geopy.geocoders import Nominatim
14
+ import folium
15
+ from streamlit_folium import st_folium
16
+ from vincenty import vincenty
17
+ import duckdb
18
+
19
+ st.set_page_config(layout="wide")
20
+
21
+
22
+ @st.cache_data
23
+ def convert_df(df):
24
+ return df.to_csv(index=0).encode('utf-8')
25
+
26
+
27
+ def duck_sql(sql_code):
28
+ con = duckdb.connect()
29
+ con.execute("PRAGMA threads=2")
30
+ con.execute("PRAGMA enable_object_cache")
31
+ return con.execute(sql_code).df()
32
+
33
+
34
+ def get_data(lat, lon, date_str):
35
+ code = f"""
36
+ select "#ZTIME" as "Date_utc", LON, LAT, MAXSIZE
37
+ from
38
+ 'data/*.parquet'
39
+ where LAT<={lat}+1 and LAT>={lat}-1
40
+ and LON<={lon}+1 and LON>={lon}-1
41
+ and "#ZTIME"<={date_str}
42
+
43
+ """
44
+ duck_sql(code)
45
+ return duck_sql(code)
46
+
47
+
48
+ def map_perimeters(address, lat, lon):
49
+
50
+ m = folium.Map(location=[lat, lon],
51
+
52
+ zoom_start=6,
53
+ height=400)
54
+ folium.Marker(
55
+ location=[lat, lon],
56
+ tooltip=f'Address: {address}',
57
+ ).add_to(m)
58
+
59
+ return m
60
+
61
+
62
+ def distance(x):
63
+ left_coords = (x[0], x[1])
64
+ right_coords = (x[2], x[3])
65
+ return vincenty(left_coords, right_coords, miles=True)
66
+
67
+
68
+ def geocode(address):
69
+ try:
70
+ address2 = address.replace(' ', '+').replace(',', '%2C')
71
+ df = pd.read_json(
72
+ f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
73
+ results = df.iloc[:1, 0][0][0]['coordinates']
74
+ lat, lon = results['y'], results['x']
75
+ except:
76
+ geolocator = Nominatim(user_agent="GTA Lookup")
77
+ geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
78
+ location = geolocator.geocode(address)
79
+ lat, lon = location.latitude, location.longitude
80
+ return lat, lon
81
+
82
+
83
+ #Side Bar
84
+ address = st.sidebar.text_input(
85
+ "Address", "Dallas, TX")
86
+ date = st.sidebar.date_input(
87
+ "Loss Date", pd.Timestamp(2023, 7, 14), key='date')
88
+ date_str = date.strftime("%Y%m%d")
89
+
90
+ #Geocode Addreses
91
+ lat, lon = geocode(address)
92
+
93
+ #Filter Data
94
+ df_hail_cut = get_data(lat, lon, date_str)
95
+
96
+
97
+ df_hail_cut["Lat_address"] = lat
98
+ df_hail_cut["Lon_address"] = lon
99
+ df_hail_cut['Miles to Hail'] = [
100
+ distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
101
+ df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(1)
102
+
103
+ df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
104
+ df_hail_cut['Category'] = np.where(df_hail_cut['Miles to Hail'] < .25, "At Location",
105
+ np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
106
+ np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
107
+ np.where(df_hail_cut['Miles to Hail'] < 10, "Within 10 Miles", 'Other'))))
108
+
109
+ df_hail_cut_group = pd.pivot_table(df_hail_cut, index='Date_utc',
110
+ columns='Category',
111
+ values='MAXSIZE',
112
+ aggfunc='max')
113
+
114
+ cols = df_hail_cut_group.columns
115
+ cols_focus = ['At Location', "Within 1 Mile",
116
+ "Within 3 Miles", "Within 10 Miles"]
117
+
118
+ missing_cols = set(cols_focus)-set(cols)
119
+ for c in missing_cols:
120
+ df_hail_cut_group[c] = np.nan
121
+
122
+ df_hail_cut_group2 = df_hail_cut_group[cols_focus].query(
123
+ "`Within 3 Miles`==`Within 3 Miles`")
124
+
125
+ for i in range(3):
126
+ df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
127
+ df_hail_cut_group2[cols_focus[i]].fillna(
128
+ 0),
129
+ df_hail_cut_group2[cols_focus[i]],
130
+ df_hail_cut_group2[cols_focus[i+1]])
131
+
132
+
133
+ df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)
134
+
135
+ df_hail_cut_group2.index = pd.to_datetime(
136
+ df_hail_cut_group2.index, format='%Y%m%d').strftime("%Y-%m-%d")
137
+
138
+
139
+ #Map Data
140
+ m = map_perimeters(address, lat, lon)
141
+
142
+ #Display
143
+ col1, col2 = st.columns((3, 2))
144
+
145
+ with col1:
146
+ st.header('Estimated Maximum Hail Size')
147
+ st.write('Data from 2010 to 2023-09-24')
148
+ df_hail_cut_group2
149
+ csv2 = convert_df(df_hail_cut_group2.reset_index())
150
+ st.download_button(
151
+ label="Download data as CSV",
152
+ data=csv2,
153
+ file_name=f'{address}_{date_str}.csv',
154
+ mime='text/csv')
155
+ with col2:
156
+ st.header('Map')
157
+ st_folium(m, height=400)
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ folium
2
+ geopy
3
+ numpy
4
+ pandas
5
+ streamlit
6
+ streamlit_folium
7
+ vincenty
8
+ duckdb