import torch import numpy as np from transformers import BertTokenizerFast, BertForTokenClassification from tqdm import tqdm import json # init tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner', output_hidden_states=True) model.eval() model.to('cuda') # get bert's entire vocab vocab_tokens = list(tokenizer.get_vocab().keys()) print(f"Total number of tokens in vocabulary: {len(vocab_tokens)}") # 30522 tokens for bert-base-uncased # precompute embeddings and attention scores for the entire vocabulary def precompute_vocabulary_embeddings_and_attention(): vocab_embeddings = [] vocab_attention_scores = [] for token in tqdm(vocab_tokens, desc="Computing Embeddings and Attention Scores", unit="token"): # no special tokens inputs = tokenizer(token, return_tensors="pt", truncation=True, padding=True, add_special_tokens=False) input_ids = inputs['input_ids'].to(model.device) with torch.no_grad(): outputs = model(input_ids=input_ids) embeddings = outputs.hidden_states[-1][0][0].cpu().numpy() # first token embedding, should only be one anyways vocab_embeddings.append(embeddings) logits = outputs.logits probabilities = torch.sigmoid(logits).cpu().numpy()[0][0] # convert logits to probabilities # store attention scores attention_scores = { 'O': float(probabilities[0]), # O class (non-entity) 'B-GEN': float(probabilities[3]), # B-GEN 'I-GEN': float(probabilities[4]), # I-GEN 'B-UNFAIR': float(probabilities[5]), # B-UNFAIR 'I-UNFAIR': float(probabilities[6]), # I-UNFAIR 'B-STEREO': float(probabilities[1]), # B-STEREO 'I-STEREO': float(probabilities[2]) # I-STEREO } vocab_attention_scores.append(attention_scores) return np.array(vocab_embeddings), vocab_attention_scores # precompute vocab_embeddings, vocab_attention_scores = precompute_vocabulary_embeddings_and_attention() # save files np.save('vocab_embeddings.npy', vocab_embeddings) with open('vocab_attention_scores.json', 'w') as f: json.dump(vocab_attention_scores, f) with open('vocab_tokens.json', 'w') as f: json.dump(vocab_tokens, f)