|
import gradio as gr |
|
import spaces |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import torch |
|
import base64 |
|
from PIL import Image, ImageDraw |
|
from io import BytesIO |
|
import re |
|
|
|
|
|
models = { |
|
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"), |
|
} |
|
|
|
processors = { |
|
"OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B") |
|
} |
|
|
|
|
|
def image_to_base64(image): |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
return img_str |
|
|
|
|
|
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): |
|
draw = ImageDraw.Draw(image) |
|
for box in bounding_boxes: |
|
xmin, ymin, xmax, ymax = box |
|
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) |
|
return image |
|
|
|
|
|
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): |
|
x_scale = original_width / scaled_width |
|
y_scale = original_height / scaled_height |
|
rescaled_boxes = [] |
|
for box in bounding_boxes: |
|
xmin, ymin, xmax, ymax = box |
|
rescaled_box = [ |
|
xmin * x_scale, |
|
ymin * y_scale, |
|
xmax * x_scale, |
|
ymax * y_scale |
|
] |
|
rescaled_boxes.append(rescaled_box) |
|
return rescaled_boxes |
|
|
|
|
|
@spaces.GPU |
|
def run_example(image, text_input, system_prompt, model_id="OS-Copilot/OS-Atlas-Base-7B"): |
|
model = models[model_id].eval() |
|
processor = processors[model_id] |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
|
|
object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>" |
|
box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>" |
|
|
|
object_ref = re.search(object_ref_pattern, text).group(1) |
|
box_content = re.search(box_pattern, text).group(1) |
|
|
|
boxes = [tuple(map(int, pair.strip("()").split(','))) for pair in box_content.split("),(")] |
|
boxes = [boxes[0][0], boxes[0][1], boxes[1][0], boxes[1][1]] |
|
|
|
scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height) |
|
return output_text, boxes, draw_bounding_boxes(image, scaled_boxes) |
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
default_system_prompt = "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]." |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown( |
|
""" |
|
# OS-Atlas Demo |
|
""") |
|
with gr.Tab(label="OS-Atlas Input"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Image", type="pil") |
|
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="OS-Copilot/OS-Atlas-Base-7B") |
|
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt) |
|
text_input = gr.Textbox(label="User Prompt") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
model_output_text = gr.Textbox(label="Model Output Text") |
|
parsed_boxes = gr.Textbox(label="Parsed Boxes") |
|
annotated_image = gr.Image(label="Annotated Image") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["assets/image1.jpg", "detect goats", default_system_prompt], |
|
["assets/image2.jpg", "detect blue button", default_system_prompt], |
|
["assets/image3.jpg", "detect person on bike", default_system_prompt], |
|
], |
|
inputs=[input_img, text_input, system_prompt], |
|
outputs=[model_output_text, parsed_boxes, annotated_image], |
|
fn=run_example, |
|
cache_examples=True, |
|
label="Try examples" |
|
) |
|
|
|
submit_btn.click(run_example, [input_img, text_input, system_prompt, model_selector], [model_output_text, parsed_boxes, annotated_image]) |
|
|
|
demo.launch(debug=True) |