Spaces:
Running
Running
import sys,os | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import numpy as np | |
import argparse | |
import torch | |
import librosa | |
from hubert import hubert_model | |
def load_audio(file: str, sr: int = 16000): | |
x, sr = librosa.load(file, sr=sr) | |
return x | |
def load_model(path, device): | |
model = hubert_model.hubert_soft(path) | |
model.eval() | |
if not (device == "cpu"): | |
model.half() | |
model.to(device) | |
return model | |
def pred_vec(model, wavPath, vecPath, device): | |
audio = load_audio(wavPath) | |
audln = audio.shape[0] | |
vec_a = [] | |
idx_s = 0 | |
while (idx_s + 20 * 16000 < audln): | |
feats = audio[idx_s:idx_s + 20 * 16000] | |
feats = torch.from_numpy(feats).to(device) | |
feats = feats[None, None, :] | |
if not (device == "cpu"): | |
feats = feats.half() | |
with torch.no_grad(): | |
vec = model.units(feats).squeeze().data.cpu().float().numpy() | |
vec_a.extend(vec) | |
idx_s = idx_s + 20 * 16000 | |
if (idx_s < audln): | |
feats = audio[idx_s:audln] | |
feats = torch.from_numpy(feats).to(device) | |
feats = feats[None, None, :] | |
if not (device == "cpu"): | |
feats = feats.half() | |
with torch.no_grad(): | |
vec = model.units(feats).squeeze().data.cpu().float().numpy() | |
# print(vec.shape) # [length, dim=256] hop=320 | |
vec_a.extend(vec) | |
np.save(vecPath, vec_a, allow_pickle=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-w", "--wav", help="wav", dest="wav") | |
parser.add_argument("-v", "--vec", help="vec", dest="vec") | |
args = parser.parse_args() | |
print(args.wav) | |
print(args.vec) | |
wavPath = args.wav | |
vecPath = args.vec | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
hubert = load_model(os.path.join( | |
"hubert_pretrain", "hubert-soft-0d54a1f4.pt"), device) | |
pred_vec(hubert, wavPath, vecPath, device) | |