import torch import numpy as np import inspect def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(int(max_length), dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def fix_len_compatibility(length, num_downsamplings_in_unet=2): while True: if length % (2**num_downsamplings_in_unet) == 0: return length length += 1 def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def generate_path(duration, mask): device = duration.device b, t_x, t_y = mask.shape cum_duration = torch.cumsum(duration, 1) path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device) cum_duration_flat = cum_duration.view(b * t_x) path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) path = path.view(b, t_x, t_y) path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] path = path * mask return path def duration_loss(logw, logw_, lengths): loss = torch.sum((logw - logw_)**2) / torch.sum(lengths) return loss f0_bin = 256 f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) def f0_to_coarse(f0): is_torch = isinstance(f0, torch.Tensor) f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * \ np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * \ (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 f0_coarse = ( f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) assert f0_coarse.max() <= 255 and f0_coarse.min( ) >= 1, (f0_coarse.max(), f0_coarse.min()) return f0_coarse def rand_ids_segments(lengths, segment_size=200): b = lengths.shape[0] ids_str_max = lengths - segment_size ids_str = (torch.rand([b]).to(device=lengths.device) * ids_str_max).to(dtype=torch.long) return ids_str def slice_segments(x, ids_str, segment_size=200): ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, :, idx_str:idx_end] return ret def retrieve_name(var): for fi in reversed(inspect.stack()): names = [var_name for var_name, var_val in fi.frame.f_locals.items() if var_val is var] if len(names) > 0: return names[0] Debug_Enable = True def debug_shapes(var): if Debug_Enable: print(retrieve_name(var), var.shape)