Spaces:
Running
Running
File size: 7,120 Bytes
9be5a22 e99bd97 8e11190 0568b17 5cc9296 9be5a22 7250862 078bc56 7250862 9be5a22 f58c9c5 9be5a22 f58c9c5 9be5a22 7e4e512 84b47ad 7e4e512 9be5a22 ec81259 9be5a22 e99bd97 9be5a22 0568b17 9be5a22 a002819 0568b17 39b062f 0568b17 39b062f 0568b17 39b062f 0568b17 39b062f 0568b17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import streamlit as st
import transformers as tf
import pandas as pd
from datetime import datetime
from plotly import graph_objects as go
from transformers_interpret import SequenceClassificationExplainer
from annotated_text import annotated_text
from palettable.scientific.sequential import Devon_10_r
from palettable.colorbrewer.diverging import RdYlGn_10, PuOr_10, BrBG_10
from overview import NQDOverview
import torch
cuda_available = torch.cuda.is_available()
print(f"Is CUDA available: {cuda_available}")
if cuda_available:
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Function to load and cache models
@st.experimental_singleton(show_spinner=False)
def load_model(username, prefix, model_name):
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}', return_all_scores=True)
return p
@st.experimental_singleton(show_spinner=False)
def load_pickle(f):
return pd.read_pickle(f)
def get_results(model, c):
res = model(c)[0]
scores = [r['score'] for r in res]
label = max(range(len(scores)), key=lambda i: scores[i])
# label = float(res['label'].split('_')[1])
# scores = res['score']
return {'label': label, 'scores': scores}
def run_models(model_names, models, c):
results = {}
for mn in model_names:
results[mn] = get_results(models[mn], c)
return results
st.title('Assess the *QuAL*ity of your feedback')
st.caption(
"""Medical education requires high-quality *written* feedback,
but evaluating these *supervisor narrative comments* is time-consuming.
The QuAL score has validity evidence for measuring the quality of short
comments in this context. We developed a NLP/ML-powered tool to
assess written comment quality via the QuAL score with high accuracy.
See our paper in *Academic Medicine* at [https://doi.org/10.1097/ACM.0000000000005634](https://doi.org/10.1097/ACM.0000000000005634)
*Try it for yourself!*
""")
### Load models
# Specify which models to load
USERNAME = 'maxspad'
PREFIX = 'nlp-qual'
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
n_models = float(len(models_to_load))
models = {}
# Show a progress bar while models are downloading,
# then hide it when done
lc_placeholder = st.empty()
loader_container = lc_placeholder.container()
loader_container.caption('Loading models... please wait...')
pbar = loader_container.progress(0.0)
for i, mn in enumerate(models_to_load):
pbar.progress((i+1.0) / n_models)
models[mn] = load_model(USERNAME, PREFIX, mn)
lc_placeholder.empty()
### Load example data
examples = load_pickle('test.pkl')
### Process input
ex = examples['comment'].sample(1, random_state=int(datetime.now().timestamp())).tolist()[0]
try:
ex = ex.strip().replace('_x000D_', '').replace('nan', 'blank')
except:
ex = 'blank'
if 'comment' not in st.session_state:
st.session_state['comment'] = ex
with st.form('comment_form'):
comment = st.text_area('Try a comment:', value=st.session_state['comment'])
left_col, right_col = st.columns([1,9], gap='medium')
submitted = left_col.form_submit_button('Submit')
trying_example = right_col.form_submit_button('Try an example!')
if submitted:
st.session_state['button_clicked'] = 'submit'
st.session_state['comment'] = comment
st.experimental_rerun()
elif trying_example:
st.session_state['button_clicked'] = 'example'
st.session_state['comment'] = ex
st.experimental_rerun()
results = run_models(models_to_load, models, st.session_state['comment'])
#Modify results to sum the QuAL score and to ignore Q3 if Q2 no suggestion
if results['q2i']['label'] == 1:
results['q3i']['label'] = 1 # can't have connection if no suggestion
results['qual']['label'] = results['q1']['label'] + (not results['q2i']['label']) + (not results['q3i']['label'])
overview = NQDOverview(st, results)
overview.draw()
def rescale(x):
return (x + 1.0) / 2.0
def get_explained_words(comment, pipe, label, cmap):
cls_explainer = SequenceClassificationExplainer(
pipe.model,
pipe.tokenizer)
word_attributions = cls_explainer(comment, class_name=label)[1:-1]
# Get rid of "##"
to_disp = [
(word, '', f'rgba{tuple([int(c*255) for c in cmap.mpl_colormap(rescale(word_score))])}')
for word, word_score in word_attributions
]
return to_disp
qual_map = {
0: 'minimal',
1: 'very low',
2: 'low',
3: 'average',
4: 'above average',
5: 'excellent'
}
q1_map = {
0: "minimal",
1: "low",
2: "moderate",
3: "high"
}
q2i_map = {
0: "did",
1: "did not"
}
with st.expander('Expand to explore further'):
st.write(f'Your comment was rated as a QuAL score of **{results["qual"]["label"]}**, indicating **{qual_map[results["qual"]["label"]]}** quality feedback.')
do_word_importances = st.checkbox("Calculate word importance. This provides more detail on model reasoning below, but takes much longer to compute.",
value=False)
st.markdown('### Level of Detail')
st.write(f"The model identified a **{q1_map[results['q1']['label']]}** level of detail in your comment.")
if do_word_importances:
st.write("Below are words that pointed the model toward (green) or against (red) identifying a high level of detail:")
with st.spinner("Calculating word importances, may take a while..."):
annotated_text(get_explained_words(st.session_state['comment'], models['q1'], 'LABEL_3', RdYlGn_10))
st.markdown('### Suggestion for Improvement')
st.write(f"The model **{q2i_map[results['q2i']['label']]}** predict that you provided a suggestion for improvement in your comment.")
if do_word_importances:
st.write(f"Below are words that pointed the model toward (green) or against (red) identifying a suggestion for improvement:")
with st.spinner("Calculating word importances, may take a while..."):
annotated_text(get_explained_words(st.session_state['comment'], models['q2i'], 'LABEL_0', RdYlGn_10))
if results['q2i']['label'] == 0:
st.markdown('### Suggestion Linking')
st.write(f"The model **{q2i_map[results['q3i']['label']]}** predict that you linked your suggestion")
if do_word_importances:
st.write(f"Below are words that pointed the model toward (green) or against (red) identifying a linked suggestion:")
with st.spinner("Calculating word importances, may take a while..."):
annotated_text(get_explained_words(st.session_state['comment'], models['q3i'], 'LABEL_0', RdYlGn_10))
# annotated_text(to_disp)
# cls_explainer = SequenceClassificationExplainer(
# models['q1'].model,
# models['q1'].tokenizer)
# word_attributions = cls_explainer(st.session_state['comment'], class_name='LABEL_3')[1:-1]
# to_disp = [
# (word, f'{word_score:.2f}', f'rgba{tuple([int(c*255) for c in Devon_10_r.mpl_colormap(word_score)])}')
# for word, word_score in word_attributions
# ]
# print(to_disp)
# annotated_text(to_disp) |