|
|
|
from transformers import pipeline |
|
import torch |
|
import json |
|
import gradio as gr |
|
|
|
text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M") |
|
|
|
|
|
with open('language.json') as f: |
|
language_data = json.load(f) |
|
|
|
def get_flores_200_code(language): |
|
for code in language_data: |
|
if code['Language'] == language: |
|
return code['FLORES-200 code'] |
|
return None |
|
|
|
def translate_text(text, destination_language): |
|
|
|
|
|
dest_code = get_flores_200_code(destination_language) |
|
|
|
translation = text_translator(text, |
|
src_lang="eng_Latn", |
|
tgt_lang=dest_code) |
|
return translation[0]["translation_text"] |
|
|
|
gr.close_all() |
|
|
|
demo = gr.Interface(fn=translate_text, |
|
inputs=[gr.Textbox(label="Input text to translate",lines=6), gr.Dropdown(["English", "German", "Eastern Panjabi", "Sanskrit", "Urdu", "Tamil", "Telugu", "Yue Chinese", "Chinese (Simplified)", "Chinese (Traditional)", "Hindi", "French", "Spanish"],label="Select destination language")], |
|
outputs=[gr.Textbox(label="Translated text", lines=4)], |
|
title="@IT AI Enthusiast (https://www.youtube.com/@itaienthusiast/) - Project 4: Multi Language translator", |
|
description="THIS APPLICATION WILL BE USED TO TRANSLATE ANY ENGLISH TO MULTIPLE LANGUAGES", |
|
concurrency_limit=16) |
|
demo.launch() |
|
|
|
|
|
|