import gradio as gr from PIL import Image, ImageDraw # Use a pipeline as a high-level helper from transformers import pipeline object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") # model_path = "../Models/models--facebook--detr-resnet-50/snapshots/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b" # object_detector = pipeline("object-detection", model=model_path) def draw_bounding_boxes(image, object_detections): """ Draws bounding boxes around detected objects on a PIL image. Args: image (PIL.Image): The input image. object_detections (list): A list of dictionaries, where each dictionary represents a detected object. Each dictionary should have the following keys: - 'score': the confidence score of the detection - 'label': the label of the detected object - 'box': a dictionary with keys 'xmin', 'ymin', 'xmax', 'ymax' representing the bounding box coordinates. Returns: PIL.Image: The input image with bounding boxes drawn around the detected objects. """ draw = ImageDraw.Draw(image) for detection in object_detections: box = detection['box'] label = detection['label'] score = detection['score'] # Draw the bounding box draw.rectangle((box['xmin'], box['ymin'], box['xmax'], box['ymax']), outline=(255, 0, 0), width=2) # Draw the label and score text = f"{label} ({score:.2f})" draw.text((box['xmin'], box['ymin'] - 20), text, fill=(255, 0, 0)) return image def detect_object(image): # raw_image = Image.open(image) output = object_detector(image) processed_image = draw_bounding_boxes(image, output) return processed_image gr.close_all() demo = gr.Interface(fn=detect_object, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[gr.Image(label="Processed Image", type="pil")], title="@IT AI Enthusiast (https://www.youtube.com/@itaienthusiast/) - Project 6: Object Detector", description="THIS APPLICATION WILL BE USED TO DETECT OBJECT INSIDE THE PROVIDED INPUT IMGAES", concurrency_limit=16) demo.launch()