Spaces:
Sleeping
Sleeping
File size: 11,893 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import interpolate
from typing import List
from torch import nn
logger = logging.getLogger(__name__)
def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True):
"""
Add/Remove extra temporal_embeddings as needed.
https://arxiv.org/abs/2104.00650 shows adding zero paddings works.
temp_embed_old: (1, num_frames_old, 1, d)
temp_embed_new: (1, num_frames_new, 1, d)
add_zero: bool, if True, add zero, else, interpolate trained embeddings.
"""
# TODO zero pad
num_frms_new = temp_embed_new.shape[1]
num_frms_old = temp_embed_old.shape[1]
logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}")
if num_frms_new > num_frms_old:
if add_zero:
temp_embed_new[
:, :num_frms_old
] = temp_embed_old # untrained embeddings are zeros.
else:
temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new)
elif num_frms_new < num_frms_old:
temp_embed_new = temp_embed_old[:, :num_frms_new]
else: # =
temp_embed_new = temp_embed_old
return temp_embed_new
def interpolate_temporal_pos_embed(temp_embed_old, num_frames_new):
"""
temp_embed_old: (1, num_frames_old, 1, d)
Returns:
temp_embed_new: (1, num_frames_new, 1, d)
"""
temp_embed_old = temp_embed_old.squeeze(2).permute(
0, 2, 1
) # (1, d, num_frames_old)
temp_embed_new = F.interpolate(
temp_embed_old, num_frames_new, mode="linear"
) # (1, d, num_frames_new)
temp_embed_new = temp_embed_new.permute(0, 2, 1).unsqueeze(
2
) # (1, num_frames_new, 1, d)
return temp_embed_new
def interpolate_pos_embed(pos_embed_old, pos_embed_new, num_patches_new):
"""
Args:
pos_embed_old: (1, L_old, d), pre-trained
pos_embed_new: (1, L_new, d), newly initialized, to be replaced by interpolated weights
num_patches_new:
"""
# interpolate position embedding
embedding_size = pos_embed_old.shape[-1]
num_extra_tokens = pos_embed_new.shape[-2] - num_patches_new
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_old.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches_new ** 0.5)
if orig_size != new_size:
# class_token and dist_token are kept unchanged
# the extra tokens seems always at the beginning of the position embedding
extra_tokens = pos_embed_old[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_old[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(
-1, orig_size, orig_size, embedding_size
).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
interpolated_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
logger.info(f"reshape position embedding from {orig_size}**2 to {new_size}**2")
return interpolated_pos_embed
else:
return pos_embed_old
def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new, patch_shape_new):
"""
Args:
state_dict_old: loaded state dict
state_dict_new: state dict for model with new image size
patch_shape_new: new model patch_shape
ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py
"""
all_keys = list(state_dict_old.keys())
for key in all_keys:
if "relative_position_index" in key:
state_dict_old.pop(key)
if "relative_position_bias_table" in key:
rel_pos_bias = state_dict_old[key]
src_num_pos, num_attn_heads = rel_pos_bias.size()
dst_num_pos, _ = state_dict_new[key].size()
dst_patch_shape = patch_shape_new
if dst_patch_shape[0] != dst_patch_shape[1]:
raise NotImplementedError()
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (
dst_patch_shape[1] * 2 - 1
)
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
if src_size != dst_size:
# logger.info("Position interpolate for %s from %dx%d to %dx%d" % (
# key, src_size, src_size, dst_size, dst_size))
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
def geometric_progression(a, r, n):
return a * (1.0 - r ** n) / (1.0 - r)
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q
# if q > 1.090307:
# q = 1.090307
dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q ** (i + 1)
r_ids = [-_ for _ in reversed(dis)]
x = r_ids + [0] + dis
y = r_ids + [0] + dis
t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)
# logger.info("Original positions = %s" % str(x))
# logger.info("Target positions = %s" % str(dx))
all_rel_pos_bias = []
for i in range(num_attn_heads):
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
f = interpolate.interp2d(x, y, z, kind="cubic")
all_rel_pos_bias.append(
torch.Tensor(f(dx, dy))
.contiguous()
.view(-1, 1)
.to(rel_pos_bias.device)
)
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
state_dict_old[key] = new_rel_pos_bias
return state_dict_old
def tile(x, dim, n_tile):
init_dim = x.size(dim)
repeat_idx = [1] * x.dim()
repeat_idx[dim] = n_tile
x = x.repeat(*repeat_idx)
order_index = torch.LongTensor(
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
)
return torch.index_select(x, dim, order_index.to(x.device))
def mask_logits(target, mask):
return target * mask + (1 - mask) * (-1e10)
class AllGather(torch.autograd.Function):
"""An autograd function that performs allgather on a tensor."""
@staticmethod
def forward(ctx, tensor, args):
output = [torch.empty_like(tensor) for _ in range(args.world_size)]
torch.distributed.all_gather(output, tensor)
ctx.rank = args.rank
ctx.batch_size = tensor.shape[0]
return torch.cat(output, dim=0)
@staticmethod
def backward(ctx, grad_output):
return (
grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)],
None,
)
allgather_wgrad = AllGather.apply
def tie_encoder_decoder_weights(
encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key: str
):
uninitialized_encoder_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
if issubclass(decoder.__class__, encoder.__class__):
logger.info(
f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal, encoder is decoder's father. In this case make sure that all encoder weights are correctly initialized."
)
elif issubclass(encoder.__class__, decoder.__class__):
logger.info(
f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal, decoder is encoder's father. In this case make sure that all encoder weights are correctly initialized."
)
else:
raise ValueError(f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal!!!")
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
skip_key: str,
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
logger.info(module_name + " is tied")
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set(
[module_name + "/" + sub_name for sub_name in encoder_modules.keys()]
)
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(
decoder_modules[decoder_name],
type(encoder_modules[encoder_name]),
) and len(encoder_modules) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
skip_key,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(
decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key
)
|