import numpy as np # -------------------------------------------------------- # 3D sine-cosine position embedding # References: # MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py # -------------------------------------------------------- def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False): """ grid_size: int of the grid height and width t_size: int of the temporal size return: pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ assert embed_dim % 4 == 0 embed_dim_spatial = embed_dim // 4 * 3 embed_dim_temporal = embed_dim // 4 # spatial grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( embed_dim_spatial, grid ) # temporal grid_t = np.arange(t_size, dtype=np.float32) pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( embed_dim_temporal, grid_t ) # concate: [T, H, W] order pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] pos_embed_temporal = np.repeat( pos_embed_temporal, grid_size**2, axis=1 ) # [T, H*W, D // 4] pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] pos_embed_spatial = np.repeat( pos_embed_spatial, t_size, axis=0 ) # [T, H*W, D // 4 * 3] pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D] if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed # -------------------------------------------------------- # 2D sine-cosine position embedding # References: # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py # MoCo v3: https://github.com/facebookresearch/moco-v3 # -------------------------------------------------------- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False): """ t_size: int of the temporal size return: pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token) """ grid_t = np.arange(t_size, dtype=np.float32) pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[0] ) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[1] ) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb