import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from scipy import interpolate from typing import List from torch import nn logger = logging.getLogger(__name__) def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True): """ Add/Remove extra temporal_embeddings as needed. https://arxiv.org/abs/2104.00650 shows adding zero paddings works. temp_embed_old: (1, num_frames_old, 1, d) temp_embed_new: (1, num_frames_new, 1, d) add_zero: bool, if True, add zero, else, interpolate trained embeddings. """ # TODO zero pad num_frms_new = temp_embed_new.shape[1] num_frms_old = temp_embed_old.shape[1] logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}") if num_frms_new > num_frms_old: if add_zero: temp_embed_new[ :, :num_frms_old ] = temp_embed_old # untrained embeddings are zeros. else: temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new) elif num_frms_new < num_frms_old: temp_embed_new = temp_embed_old[:, :num_frms_new] else: # = temp_embed_new = temp_embed_old return temp_embed_new def interpolate_temporal_pos_embed(temp_embed_old, num_frames_new): """ temp_embed_old: (1, num_frames_old, 1, d) Returns: temp_embed_new: (1, num_frames_new, 1, d) """ temp_embed_old = temp_embed_old.squeeze(2).permute( 0, 2, 1 ) # (1, d, num_frames_old) temp_embed_new = F.interpolate( temp_embed_old, num_frames_new, mode="linear" ) # (1, d, num_frames_new) temp_embed_new = temp_embed_new.permute(0, 2, 1).unsqueeze( 2 ) # (1, num_frames_new, 1, d) return temp_embed_new def interpolate_pos_embed(pos_embed_old, pos_embed_new, num_patches_new): """ Args: pos_embed_old: (1, L_old, d), pre-trained pos_embed_new: (1, L_new, d), newly initialized, to be replaced by interpolated weights num_patches_new: """ # interpolate position embedding embedding_size = pos_embed_old.shape[-1] num_extra_tokens = pos_embed_new.shape[-2] - num_patches_new # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_old.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches_new ** 0.5) if orig_size != new_size: # class_token and dist_token are kept unchanged # the extra tokens seems always at the beginning of the position embedding extra_tokens = pos_embed_old[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_old[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape( -1, orig_size, orig_size, embedding_size ).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) interpolated_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) logger.info(f"reshape position embedding from {orig_size}**2 to {new_size}**2") return interpolated_pos_embed else: return pos_embed_old def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new, patch_shape_new): """ Args: state_dict_old: loaded state dict state_dict_new: state dict for model with new image size patch_shape_new: new model patch_shape ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py """ all_keys = list(state_dict_old.keys()) for key in all_keys: if "relative_position_index" in key: state_dict_old.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict_old[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = state_dict_new[key].size() dst_patch_shape = patch_shape_new if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * ( dst_patch_shape[1] * 2 - 1 ) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: # logger.info("Position interpolate for %s from %dx%d to %dx%d" % ( # key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) # logger.info("Original positions = %s" % str(x)) # logger.info("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind="cubic") all_rel_pos_bias.append( torch.Tensor(f(dx, dy)) .contiguous() .view(-1, 1) .to(rel_pos_bias.device) ) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict_old[key] = new_rel_pos_bias return state_dict_old def tile(x, dim, n_tile): init_dim = x.size(dim) repeat_idx = [1] * x.dim() repeat_idx[dim] = n_tile x = x.repeat(*repeat_idx) order_index = torch.LongTensor( np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]) ) return torch.index_select(x, dim, order_index.to(x.device)) def mask_logits(target, mask): return target * mask + (1 - mask) * (-1e10) class AllGather(torch.autograd.Function): """An autograd function that performs allgather on a tensor.""" @staticmethod def forward(ctx, tensor, args): output = [torch.empty_like(tensor) for _ in range(args.world_size)] torch.distributed.all_gather(output, tensor) ctx.rank = args.rank ctx.batch_size = tensor.shape[0] return torch.cat(output, dim=0) @staticmethod def backward(ctx, grad_output): return ( grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)], None, ) allgather_wgrad = AllGather.apply def tie_encoder_decoder_weights( encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key: str ): uninitialized_encoder_weights: List[str] = [] if decoder.__class__ != encoder.__class__: if issubclass(decoder.__class__, encoder.__class__): logger.info( f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal, encoder is decoder's father. In this case make sure that all encoder weights are correctly initialized." ) elif issubclass(encoder.__class__, decoder.__class__): logger.info( f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal, decoder is encoder's father. In this case make sure that all encoder weights are correctly initialized." ) else: raise ValueError(f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal!!!") def tie_encoder_to_decoder_recursively( decoder_pointer: nn.Module, encoder_pointer: nn.Module, module_name: str, uninitialized_encoder_weights: List[str], skip_key: str, depth=0, ): assert isinstance(decoder_pointer, nn.Module) and isinstance( encoder_pointer, nn.Module ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" if hasattr(decoder_pointer, "weight") and skip_key not in module_name: assert hasattr(encoder_pointer, "weight") encoder_pointer.weight = decoder_pointer.weight if hasattr(decoder_pointer, "bias"): assert hasattr(encoder_pointer, "bias") encoder_pointer.bias = decoder_pointer.bias logger.info(module_name + " is tied") return encoder_modules = encoder_pointer._modules decoder_modules = decoder_pointer._modules if len(decoder_modules) > 0: assert ( len(encoder_modules) > 0 ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" all_encoder_weights = set( [module_name + "/" + sub_name for sub_name in encoder_modules.keys()] ) encoder_layer_pos = 0 for name, module in decoder_modules.items(): if name.isdigit(): encoder_name = str(int(name) + encoder_layer_pos) decoder_name = name if not isinstance( decoder_modules[decoder_name], type(encoder_modules[encoder_name]), ) and len(encoder_modules) != len(decoder_modules): # this can happen if the name corresponds to the position in a list module list of layers # in this case the decoder has added a cross-attention that the encoder does not have # thus skip this step and subtract one layer pos from encoder encoder_layer_pos -= 1 continue elif name not in encoder_modules: continue elif depth > 500: raise ValueError( "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." ) else: decoder_name = encoder_name = name tie_encoder_to_decoder_recursively( decoder_modules[decoder_name], encoder_modules[encoder_name], module_name + "/" + name, uninitialized_encoder_weights, skip_key, depth=depth + 1, ) all_encoder_weights.remove(module_name + "/" + encoder_name) uninitialized_encoder_weights += list(all_encoder_weights) # tie weights recursively tie_encoder_to_decoder_recursively( decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key )