import math import torch import torch.nn.functional as F from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from torch import nn import torch.utils.checkpoint as checkpoint from functools import partial from einops import rearrange from .pos_embed import get_3d_sincos_pos_embed, get_2d_sincos_pos_embed, get_1d_sincos_pos_embed from .flash_attention_class import FlashAttention from flash_attn.modules.mlp import FusedMLP from flash_attn.ops.rms_norm import DropoutAddRMSNorm class CrossAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None, out_dim=None): super().__init__() if out_dim is None: out_dim = dim self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 assert all_head_dim == dim self.q = nn.Linear(dim, all_head_dim, bias=False) self.k = nn.Linear(dim, all_head_dim, bias=False) self.v = nn.Linear(dim, all_head_dim, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.k_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, out_dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, k=None, v=None): B, N, C = x.shape N_k = k.shape[1] N_v = v.shape[1] q_bias, k_bias, v_bias = None, None, None if self.q_bias is not None: q_bias = self.q_bias k_bias = self.k_bias v_bias = self.v_bias q = F.linear(input=x, weight=self.q.weight, bias=q_bias) q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim) k = F.linear(input=k, weight=self.k.weight, bias=k_bias) k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) v = F.linear(input=v, weight=self.v.weight, bias=v_bias) v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) q = q * self.scale attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class AttentiveBlock(nn.Module): def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): super().__init__() self.norm1_q = norm_layer(dim) self.norm1_k = norm_layer(dim) self.norm1_v = norm_layer(dim) self.cross_attn = CrossAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): x_q = self.norm1_q(x_q + pos_q) x_k = self.norm1_k(x_kv + pos_k) x_v = self.norm1_v(x_kv) x = self.cross_attn(x_q, k=x_k, v=x_v) return x class AttentionPoolingBlock(AttentiveBlock): def forward(self, x): x_q = x.mean(1, keepdim=True) x_kv, pos_q, pos_k = x, 0, 0 x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) x = x.squeeze(1) return x class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) self.force_fp32 = force_fp32 @torch.cuda.amp.autocast(enabled=False) def forward(self, x): if self.force_fp32: output_type = x.dtype out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float() return out.to(dtype=output_type) else: out = x.mul_(self.gamma) if self.inplace else x * self.gamma return out class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.use_flash_attn = use_flash_attn if use_flash_attn: self.causal = causal self.inner_attn = FlashAttention(attention_dropout=attn_drop) self.qk_normalization = qk_normalization self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.use_fused_rmsnorm = use_fused_rmsnorm def _naive_attn(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.qk_normalization: B_, H_, N_, D_ = q.shape q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) attn = ((q * self.scale) @ k.transpose(-2, -1)) # attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16 attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def _flash_attn(self, x, key_padding_mask=None, need_weights=False): qkv = self.qkv(x) qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads) if self.qk_normalization: q, k, v = qkv.unbind(2) if self.use_fused_rmsnorm: q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape) k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape) else: q = self.q_norm(q.flatten(-2, -1)).view(q.shape) k = self.k_norm(k.flatten(-2, -1)).view(k.shape) qkv = torch.stack([q, k, v], dim=2) context, _ = self.inner_attn( qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal ) outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) outs = self.proj_drop(outs) return outs def forward(self, x): x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) return x class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = to_2tuple(bias) drop_probs = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False, fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False, use_fused_rmsnorm=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, qk_normalization=qk_normalization, use_fused_rmsnorm=use_fused_rmsnorm) self.ls1 = LayerScale(dim, init_values=init_values, force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if use_fused_mlp: self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic) else: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values, force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.with_cp = with_cp self.use_fused_rmsnorm = use_fused_rmsnorm def forward(self, x, residual=None): def _inner_forward(x, residual=None): if self.use_fused_rmsnorm: x, residual = self.norm1(x, residual) x = self.drop_path1(self.ls1(self.attn(x))) x, residual = self.norm2(x, residual) x = self.drop_path2(self.ls2(self.mlp(x))) return x, residual else: assert residual is None x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x if self.with_cp: return checkpoint.checkpoint(_inner_forward, x, residual) else: return _inner_forward(x, residual=residual) class PatchEmbed(nn.Module): """ 3D Image to Patch Embedding """ def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=8, tubelet_size=1, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = ( num_frames // tubelet_size, img_size[0] // patch_size[0], img_size[1] // patch_size[1] ) # (T, H, W) self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] self.proj = nn.Conv3d( in_channels=in_chans, out_channels=embed_dim, kernel_size=(tubelet_size, patch_size[0], patch_size[1]), stride=(tubelet_size, patch_size[0], patch_size[1]) ) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): x = self.proj(x) x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C x = self.norm(x) return x class Linear_Decoder(nn.Module): def __init__(self, in_channels=1408, out_channels=3200, norm_layer=nn.LayerNorm, norm_type='l2'): super().__init__() self.norm_type = norm_type print(f'Normalization Type: {norm_type}') self.head = nn.Linear(in_channels, out_channels) self.norm = norm_layer(out_channels) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): x = self.norm(self.head(x)) if self.norm_type == 'l2': x = x / x.norm(dim=-1, keepdim=True) elif self.norm_type == 'none': pass else: raise NotImplementedError return x class MLP_Decoder(nn.Module): def __init__(self, in_channels=768, out_channels=768, norm_layer=nn.LayerNorm, norm_type='l2'): super().__init__() self.norm_type = norm_type print(f'Normalization Type: {norm_type}') self.head = nn.Sequential( nn.Linear(in_channels, in_channels), nn.GELU(), nn.Linear(in_channels, out_channels) ) self.norm = norm_layer(out_channels) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): x = self.norm(self.head(x)) if self.norm_type == 'l2': x = x / x.norm(dim=-1, keepdim=True) elif self.norm_type == 'none': pass else: raise NotImplementedError return x class PretrainInternVideo2(nn.Module): def __init__( self, in_chans: int = 3, patch_size: int = 14, img_size: int = 224, qkv_bias: bool = False, drop_path_rate: float = 0.25, embed_dim: int = 1408, num_heads: int = 16, mlp_ratio: float = 4.3637, init_values: float = 1e-5, qk_normalization: bool = True, depth: int = 40, use_flash_attn: bool = True, use_fused_rmsnorm: bool = True, use_fused_mlp: bool = True, fused_mlp_heuristic: int = 1, attn_pool_num_heads: int = 16, clip_embed_dim: int = 768, layerscale_no_force_fp32: bool = False, num_frames: int = 8, tubelet_size: int = 1, sep_pos_embed: bool = False, use_checkpoint: bool = False, checkpoint_num: int = 0, # for clip clip_teacher_embed_dim: int = 3200, clip_teacher_final_dim: int = 768, # if 0, not distill final features clip_norm_type: str = 'l2', clip_return_layer: int = 1, clip_student_return_interval: int = 1, # for mae mae_teacher_embed_dim: int = 1408, mae_norm_type: str = 'l2', mae_return_layer: int = 1, mae_student_return_interval: int = 1, ): super().__init__() assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print( 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent') self.use_flash_attn = use_flash_attn self.embed_dim = embed_dim self.clip_norm_type = clip_norm_type self.clip_return_index = [] for i in range(clip_return_layer): self.clip_return_index.append(depth - int(i * clip_student_return_interval) - 1) print(f'CLIP Normalization Type: {clip_norm_type}') print(f'CLIP Strudent Return Index: {self.clip_return_index}') self.mae_norm_type = mae_norm_type self.mae_return_index = [] for i in range(mae_return_layer): self.mae_return_index.append(depth - int(i * mae_student_return_interval) - 1) print(f'MAE Normalization Type: {mae_norm_type}') print(f'MAE Strudent Return Index: {self.mae_return_index}') if use_fused_rmsnorm: norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True) else: norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) self.norm_layer_for_blocks = norm_layer_for_blocks self.patch_embed = PatchEmbed( img_size, patch_size, in_chans, embed_dim, num_frames=num_frames, tubelet_size=tubelet_size, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17 self.sep_pos_embed = sep_pos_embed if sep_pos_embed: print("Use seperable position embedding") grid_size = self.patch_embed.grid_size self.grid_size = grid_size self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim)) # for CLIP decoder self.clip_pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) self.clip_pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) self.clip_pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim)) # for MAE decoder self.mae_pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim)) self.mae_pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim)) else: print("Use joint position embedding") self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) # for CLIP decoder self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) # for MAE decoder self.mae_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # choose which layer to use checkpoint with_cp_list = [False] * depth if use_checkpoint: for idx in range(depth): if idx < checkpoint_num: with_cp_list[idx] = True print(f"Droppath rate: {dpr}") print(f"Checkpoint list: {with_cp_list}") self.blocks = nn.ModuleList([ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer_for_blocks, drop_path=dpr[i], init_values=init_values, attn_drop=0., use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp, fused_mlp_heuristic=fused_mlp_heuristic, with_cp=with_cp_list[i], qk_normalization=qk_normalization, layerscale_no_force_fp32=layerscale_no_force_fp32, use_fused_rmsnorm=use_fused_rmsnorm) for i in range(depth)]) self.clip_projector = AttentionPoolingBlock( dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim) # CLIP decoder self.clip_decoder = nn.ModuleList([ Linear_Decoder( in_channels=embed_dim, out_channels=clip_teacher_embed_dim, norm_layer=partial(nn.LayerNorm, eps=1e-5), norm_type=clip_norm_type ) for _ in range(clip_return_layer) ]) self.final_clip_decoder = nn.Identity() if clip_teacher_final_dim > 0: self.final_clip_decoder = Linear_Decoder( in_channels=clip_embed_dim, out_channels=clip_teacher_final_dim, norm_layer=partial(nn.LayerNorm, eps=1e-5), norm_type=clip_norm_type ) # MAE decoder self.mae_decoder = nn.ModuleList([ MLP_Decoder( in_channels=embed_dim, out_channels=mae_teacher_embed_dim, norm_layer=partial(nn.LayerNorm, eps=1e-5), norm_type=mae_norm_type ) for _ in range(mae_return_layer) ]) self.init_pos_embed() trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() def init_pos_embed(self): print("Init pos_embed from sincos pos_embed") if self.sep_pos_embed: pos_embed_spatial = get_2d_sincos_pos_embed( self.pos_embed_spatial.shape[-1], self.patch_embed.grid_size[1], # height & weight ) self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) self.clip_pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) self.mae_pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0)) pos_embed_temporal = get_1d_sincos_pos_embed( self.pos_embed_spatial.shape[-1], self.patch_embed.grid_size[0], # t_size ) self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) self.clip_pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) self.mae_pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0)) else: pos_embed = get_3d_sincos_pos_embed( self.pos_embed.shape[-1], self.patch_embed.grid_size[1], # height & weight self.patch_embed.grid_size[0], # t_size cls_token=True ) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) self.clip_pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) self.mae_pos_embed.data.copy_(torch.from_numpy(pos_embed[1:]).float().unsqueeze(0)) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) @property def dtype(self): return self.patch_embed.proj.weight.dtype def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return { 'pos_embed', 'pos_embed_spatial', 'pos_embed_temporal', 'pos_embed_cls', 'cls_token', 'clip_pos_embed', 'clip_pos_embed_spatial', 'clip_pos_embed_temporal', 'clip_pos_embed_cls', 'mae_pos_embed', 'mae_pos_embed_spatial', 'mae_pos_embed_temporal', } def forward(self, x, mask): x = self.patch_embed(x.type(self.dtype)) B, T, L, C = x.shape # T: temporal; L: spatial x = x.view([B, T * L, C]) # append cls token cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add pos_embed if self.sep_pos_embed: pos_embed = self.pos_embed_spatial.repeat( 1, self.grid_size[0], 1 ) + torch.repeat_interleave( self.pos_embed_temporal, self.grid_size[1] * self.grid_size[2], dim=1, ) pos_embed = torch.cat( [ self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1), pos_embed, ], 1, ) else: pos_embed = self.pos_embed x = x + pos_embed # mask tokens, ~mask means visible x = x[~mask].reshape(B, -1, C) residual = None x_clip = [] x_mae = [] for idx, blk in enumerate(self.blocks): if isinstance(x, tuple) and len(x) == 2: x, residual = x x = blk(x, residual=residual) # return intermediate features for CLIP if idx in self.clip_return_index: if isinstance(x, tuple) and len(x) == 2: tmp_x, tmp_residual = x if residual is not None: x_clip.append(tmp_x + tmp_residual) else: x_clip.append(x) # return intermediate features for MAE if idx in self.mae_return_index: if isinstance(x, tuple) and len(x) == 2: tmp_x, tmp_residual = x if residual is not None: x_mae.append((tmp_x + tmp_residual)[:, 1:]) else: x_mae.append(x[:, 1:]) if isinstance(x, tuple) and len(x) == 2: x, residual = x if residual is not None: x = x + residual x = self.clip_projector(x) # align CLIP x_clip = torch.stack(x_clip) K, B, _, C_CLIP = x_clip.shape # add pos_embed if self.sep_pos_embed: clip_pos_embed = self.clip_pos_embed_spatial.repeat( 1, self.grid_size[0], 1 ) + torch.repeat_interleave( self.clip_pos_embed_temporal, self.grid_size[1] * self.grid_size[2], dim=1, ) clip_pos_embed = torch.cat( [ self.clip_pos_embed_cls.expand(clip_pos_embed.shape[0], -1, -1), clip_pos_embed, ], 1, ) else: clip_pos_embed = self.clip_pos_embed clip_pos_embed = clip_pos_embed.repeat(B, 1, 1) x_clip = x_clip + clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1) # CLIP decoder x_clip_align = [] for idx, clip_decoder in enumerate(self.clip_decoder): x_clip_align.append(clip_decoder(x_clip[idx])) x_clip_align = torch.stack(x_clip_align) x_align = self.final_clip_decoder(x) # align MAE x_mae = torch.stack(x_mae) K, B, _, C_MAE = x_mae.shape # add pos_embed if self.sep_pos_embed: mae_pos_embed = self.mae_pos_embed_spatial.repeat( 1, self.grid_size[0], 1 ) + torch.repeat_interleave( self.mae_pos_embed_temporal, self.grid_size[1] * self.grid_size[2], dim=1, ) else: mae_pos_embed = self.mae_pos_embed mae_pos_embed = mae_pos_embed.repeat(B, 1, 1) x_mae = x_mae + mae_pos_embed[~mask[:, 1:]].view(B, -1, C_MAE).unsqueeze(0).repeat(K, 1, 1, 1) # MAE decoder x_mae_align = [] for idx, mae_decoder in enumerate(self.mae_decoder): x_mae_align.append(mae_decoder(x_mae[idx])) x_mae_align = torch.stack(x_mae_align) return x_clip_align, x_align, x_mae_align @register_model def pretrain_internvideo2_1B_patch14_224(pretrained=False, **kwargs): model = PretrainInternVideo2( img_size=224, patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, attn_pool_num_heads=16, clip_embed_dim=768, **kwargs ) return model @register_model def pretrain_internvideo2_6B_patch14_224(pretrained=False, **kwargs): model = PretrainInternVideo2( img_size=224, patch_size=14, embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4, attn_pool_num_heads=16, clip_embed_dim=768, **kwargs ) return model if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 8 img_size = 224 # model = pretrain_internvideo2_1B_patch14_224(clip_return_layer=6).cuda().half() model = pretrain_internvideo2_6B_patch14_224(clip_return_layer=1).cuda().half() # print(model) # flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, img_size, img_size).cuda().half()) # s = time.time() # print(flop_count_table(flops, max_depth=1)) # print(time.time()-s) mask = torch.cat([ torch.zeros(1, 1), torch.ones(1, 8 * int(16 * 16 * 0.75)), torch.zeros(1, 8 * int(16 * 16 * 0.25)), ], dim=-1).to(torch.bool).cuda() output = model(torch.rand(4, 3, num_frames, img_size, img_size).cuda().half(), mask.repeat(4, 1)) print(output[0].shape) print(output[1].shape)