import os from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from flash_attn import flash_attn_func MODEL_PATH = 'your_model_path/videomae' _MODELS = { # see videomaev2 "vit_g14_hybrid": os.path.join(MODEL_PATH, "vit_g_hybrid_1200e_pre.pth"), } def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=self.scale, causal=False).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.tubelet_size = int(tubelet_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv3d(in_channels=in_chans, out_channels=embed_dim, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1])) def forward(self, x, **kwargs): B, C, T, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x # sin-cos position encoding # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 def get_sinusoid_encoding_table(n_position, d_hid, cur_frame=-1, pre_n_position=1568): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] # generate checkpoint position embedding sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) print(f"n_position: {n_position}") print(f"pre_n_position: {pre_n_position}") if n_position // cur_frame * 8 != pre_n_position and cur_frame != -1: T = 8 # checkpoint frame P = 14 # checkpoint size C = d_hid new_P = int((n_position // cur_frame) ** 0.5) # testing size print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}') print(f'Interpolate the position embedding') sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2) sinusoid_table = torch.nn.functional.interpolate( sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C) sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C if cur_frame != -1 and cur_frame != 8: print(f'Pretraining uses 8 frames, but current frame is {cur_frame}') print(f'Interpolate the position embedding') T = 8 # checkpoint frame new_T = cur_frame # testing frame # interpolate P = int((n_position // cur_frame) ** 0.5) # testing size C = d_hid sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C if n_position == pre_n_position: return sinusoid_table else: print("Use learnable position embedding") return nn.Parameter(sinusoid_table, requires_grad=True) class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=0., all_frames=16, tubelet_size=2, mae_norm_type='l2', mae_return_layer=1, mae_return_interval=1, ): super().__init__() self.mae_norm_type = mae_norm_type self.return_index = [] for i in range(mae_return_layer): self.return_index.append(depth - int(i * mae_return_interval) - 1) print(f'Normalization Type: {mae_norm_type}') print(f'MAE Teacher return index: : {self.return_index}') self.tubelet_size = tubelet_size self.depth = depth self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=all_frames, tubelet_size=self.tubelet_size) num_patches = self.patch_embed.num_patches # sine-cosine positional embeddings is on the way if patch_size == 14: pre_n_position = 2048 else: pre_n_position = 1568 self.pos_embed = get_sinusoid_encoding_table( num_patches, embed_dim, all_frames // tubelet_size, pre_n_position=pre_n_position ) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(depth)]) self.norm = norm_layer(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x, mask=None): x = self.patch_embed(x) B, _, C = x.size() if self.pos_embed is not None: x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach() x = self.pos_drop(x) if mask is not None: x = x[~mask].reshape(B, -1, C) # ~mask means visible z = [] for idx, blk in enumerate(self.blocks): x = blk(x) if idx == self.depth - 1: x = self.norm(x) if idx in self.return_index: z.append(x) x = torch.stack(z) if self.mae_norm_type == 'l2': x = x / x.norm(dim=-1, keepdim=True) elif self.mae_norm_type == 'none': pass else: raise NotImplementedError return x def load_state_dict(model, state_dict): from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('encoder.'): new_k = k[8:] if new_k == "patch_embed.proj.weight" and model.tubelet_size == 1: print("Kernel pooling") v = v.mean(dim=2, keepdim=True) new_state_dict[new_k] = v msg = model.load_state_dict(new_state_dict) print(msg) def mae_g14_hybrid(pretrained=True, **kwargs): model = VisionTransformer( patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: print('load MAE pretrained weights') state_dict = torch.load(_MODELS["vit_g14_hybrid"], map_location='cpu') load_state_dict(model, state_dict['model']) return model if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 16 model = mae_g14_hybrid(all_frames=num_frames, tubelet_size=2).cuda().half() # print(model) flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224).cuda().half()) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s) # print(model(torch.rand(1, 3, num_frames, 224, 224)).shape)