Spaces:
Sleeping
Sleeping
Updated with YOLO11
Browse files- README.md +1 -1
- app.py +57 -25
- requirements.txt +6 -3
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: πΌοΈ
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: Segmentation-Playground
|
3 |
emoji: πΌοΈ
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
app.py
CHANGED
@@ -5,34 +5,66 @@ import numpy as np
|
|
5 |
import supervision as sv
|
6 |
from inference import get_model
|
7 |
import warnings
|
|
|
8 |
|
9 |
warnings.filterwarnings("ignore")
|
10 |
|
11 |
MARKDOWN = """
|
12 |
-
<h1 style='text-align:
|
13 |
-
Welcome to
|
14 |
|
15 |
A simple project just for fun for on the go instance segmentation. π
|
16 |
|
17 |
Inspired from YOLO-ARENA by SkalskiP. π
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"""
|
22 |
|
23 |
IMAGE_EXAMPLES = [
|
24 |
-
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.3],
|
25 |
-
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.3],
|
26 |
-
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.3],
|
27 |
]
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
LABEL_ANNOTATORS = sv.LabelAnnotator(
|
34 |
MASK_ANNOTATORS = sv.MaskAnnotator()
|
35 |
-
BOUNDING_BOX_ANNOTATORS = sv.
|
36 |
|
37 |
|
38 |
def detect_and_annotate(
|
@@ -42,12 +74,12 @@ def detect_and_annotate(
|
|
42 |
iou_threshold: float,
|
43 |
class_id_mapping: dict = None
|
44 |
) -> np.ndarray:
|
45 |
-
result = model
|
46 |
input_image,
|
47 |
-
|
48 |
-
|
49 |
)[0]
|
50 |
-
detections = sv.Detections.
|
51 |
|
52 |
if class_id_mapping:
|
53 |
detections.class_id = np.array([
|
@@ -84,11 +116,11 @@ def process_image(
|
|
84 |
iou_threshold = 0.3 # Default value, adjust as necessary
|
85 |
|
86 |
yolo_v8n_annotated_image = detect_and_annotate(
|
87 |
-
|
88 |
yolo_v8s_annotated_image = detect_and_annotate(
|
89 |
-
|
90 |
yolo_8m_annotated_image = detect_and_annotate(
|
91 |
-
|
92 |
|
93 |
return (
|
94 |
yolo_v8n_annotated_image,
|
@@ -102,7 +134,7 @@ yolo_v8N_confidence_threshold_component = gr.Slider(
|
|
102 |
maximum=1.0,
|
103 |
value=0.3,
|
104 |
step=0.01,
|
105 |
-
label="
|
106 |
info=(
|
107 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
108 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
@@ -115,7 +147,7 @@ yolo_v8S_confidence_threshold_component = gr.Slider(
|
|
115 |
maximum=1.0,
|
116 |
value=0.3,
|
117 |
step=0.01,
|
118 |
-
label="
|
119 |
info=(
|
120 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
121 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
@@ -128,7 +160,7 @@ yolo_v8M_confidence_threshold_component = gr.Slider(
|
|
128 |
maximum=1.0,
|
129 |
value=0.3,
|
130 |
step=0.01,
|
131 |
-
label="
|
132 |
info=(
|
133 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
134 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
@@ -166,16 +198,16 @@ with gr.Blocks() as demo:
|
|
166 |
)
|
167 |
yolo_v8n_output_image_component = gr.Image(
|
168 |
type='pil',
|
169 |
-
label='
|
170 |
)
|
171 |
with gr.Row():
|
172 |
yolo_v8s_output_image_component = gr.Image(
|
173 |
type='pil',
|
174 |
-
label='
|
175 |
)
|
176 |
yolo_v8m_output_image_component = gr.Image(
|
177 |
type='pil',
|
178 |
-
label='
|
179 |
)
|
180 |
submit_button_component = gr.Button(
|
181 |
value='Submit',
|
|
|
5 |
import supervision as sv
|
6 |
from inference import get_model
|
7 |
import warnings
|
8 |
+
from ultralytics import YOLO
|
9 |
|
10 |
warnings.filterwarnings("ignore")
|
11 |
|
12 |
MARKDOWN = """
|
13 |
+
<h1 style='text-align: left'>Segmentation-Playground πΌοΈ</h1>
|
14 |
+
Welcome to Segmentation-Playground! This demo showcases the segmentation capabilities of various YOLO models pre-trained on the COCO Dataset. πππ
|
15 |
|
16 |
A simple project just for fun for on the go instance segmentation. π
|
17 |
|
18 |
Inspired from YOLO-ARENA by SkalskiP. π
|
19 |
|
20 |
+
- **YOLOv8**
|
21 |
+
<div style="display: flex; align-items: center;">
|
22 |
+
<a href="https://docs.ultralytics.com/models/yolov8/" style="margin-right: 10px;">
|
23 |
+
<img src="https://badges.aleen42.com/src/github.svg">
|
24 |
+
</a>
|
25 |
+
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
|
26 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg">
|
27 |
+
</a>
|
28 |
+
</div>
|
29 |
+
- **YOLOv9**
|
30 |
+
<div style="display: flex; align-items: center;">
|
31 |
+
<a href="https://github.com/WongKinYiu/yolov9" style="margin-right: 10px;">
|
32 |
+
<img src="https://badges.aleen42.com/src/github.svg">
|
33 |
+
</a>
|
34 |
+
<a href="https://arxiv.org/abs/2402.13616" style="margin-right: 10px;">
|
35 |
+
<img src="https://img.shields.io/badge/arXiv-2402.13616-b31b1b.svg">
|
36 |
+
</a>
|
37 |
+
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
|
38 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg">
|
39 |
+
</a>
|
40 |
+
</div>
|
41 |
+
- **YOLO11**
|
42 |
+
<div style="display: flex; align-items: center;">
|
43 |
+
<a href="https://docs.ultralytics.com/models/yolo11/" style="margin-right: 10px;">
|
44 |
+
<img src="https://badges.aleen42.com/src/github.svg">
|
45 |
+
</a>
|
46 |
+
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
|
47 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg">
|
48 |
+
</a>
|
49 |
+
</div>
|
50 |
+
|
51 |
+
Powered by Roboflow [Inference](https://github.com/roboflow/inference),
|
52 |
+
[Supervision](https://github.com/roboflow/supervision) and [Ultralytics](https://github.com/ultralytics/ultralytics).π₯
|
53 |
"""
|
54 |
|
55 |
IMAGE_EXAMPLES = [
|
56 |
+
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.3, 0.5],
|
57 |
+
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.3, 0.5],
|
58 |
+
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.3, 0.5],
|
59 |
]
|
60 |
|
61 |
+
YOLO_V8S_MODEL = YOLO("yolov8m-seg.pt")
|
62 |
+
YOLO_V9S_MODEL = YOLO("yolov9e-seg.pt")
|
63 |
+
YOLO_11S_MODEL = YOLO("yolo11m-seg.pt")
|
64 |
|
65 |
+
LABEL_ANNOTATORS = sv.LabelAnnotator()
|
66 |
MASK_ANNOTATORS = sv.MaskAnnotator()
|
67 |
+
BOUNDING_BOX_ANNOTATORS = sv.BoxAnnotator()
|
68 |
|
69 |
|
70 |
def detect_and_annotate(
|
|
|
74 |
iou_threshold: float,
|
75 |
class_id_mapping: dict = None
|
76 |
) -> np.ndarray:
|
77 |
+
result = model(
|
78 |
input_image,
|
79 |
+
conf=confidence_threshold,
|
80 |
+
iou=iou_threshold
|
81 |
)[0]
|
82 |
+
detections = sv.Detections.from_ultralytics(result)
|
83 |
|
84 |
if class_id_mapping:
|
85 |
detections.class_id = np.array([
|
|
|
116 |
iou_threshold = 0.3 # Default value, adjust as necessary
|
117 |
|
118 |
yolo_v8n_annotated_image = detect_and_annotate(
|
119 |
+
YOLO_V8S_MODEL, input_image, yolo_v8_confidence_threshold, iou_threshold)
|
120 |
yolo_v8s_annotated_image = detect_and_annotate(
|
121 |
+
YOLO_V9S_MODEL, input_image, yolo_v9_confidence_threshold, iou_threshold)
|
122 |
yolo_8m_annotated_image = detect_and_annotate(
|
123 |
+
YOLO_11S_MODEL, input_image, yolo_v10_confidence_threshold, iou_threshold)
|
124 |
|
125 |
return (
|
126 |
yolo_v8n_annotated_image,
|
|
|
134 |
maximum=1.0,
|
135 |
value=0.3,
|
136 |
step=0.01,
|
137 |
+
label="YOLOv8m Confidence Threshold",
|
138 |
info=(
|
139 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
140 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
|
147 |
maximum=1.0,
|
148 |
value=0.3,
|
149 |
step=0.01,
|
150 |
+
label="YOLOv9e Confidence Threshold",
|
151 |
info=(
|
152 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
153 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
|
160 |
maximum=1.0,
|
161 |
value=0.3,
|
162 |
step=0.01,
|
163 |
+
label="YOLO11m Confidence Threshold",
|
164 |
info=(
|
165 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
166 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
|
198 |
)
|
199 |
yolo_v8n_output_image_component = gr.Image(
|
200 |
type='pil',
|
201 |
+
label='YOLOv8m'
|
202 |
)
|
203 |
with gr.Row():
|
204 |
yolo_v8s_output_image_component = gr.Image(
|
205 |
type='pil',
|
206 |
+
label='YOLOv9e'
|
207 |
)
|
208 |
yolo_v8m_output_image_component = gr.Image(
|
209 |
type='pil',
|
210 |
+
label='YOLO11m'
|
211 |
)
|
212 |
submit_button_component = gr.Button(
|
213 |
value='Submit',
|
requirements.txt
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
setuptools<70.0.0
|
2 |
awscli==1.29.54
|
3 |
-
gradio
|
4 |
-
inference
|
5 |
-
supervision
|
|
|
|
|
|
|
|
1 |
setuptools<70.0.0
|
2 |
awscli==1.29.54
|
3 |
+
gradio
|
4 |
+
inference
|
5 |
+
supervision
|
6 |
+
ultralytics
|
7 |
+
dill
|
8 |
+
timm
|