from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
from inference import get_model
import warnings
from ultralytics import YOLO
warnings.filterwarnings("ignore")
MARKDOWN = """
Segmentation-Playground 🖼️
Welcome to Segmentation-Playground! This demo showcases the segmentation capabilities of various YOLO models pre-trained on the COCO Dataset. 🚀🔍👀
A simple project just for fun for on the go instance segmentation. 🎉
Inspired from YOLO-ARENA by SkalskiP. 🙏
- **YOLOv8**
- **YOLOv9**
- **YOLO11**
Powered by Roboflow [Inference](https://github.com/roboflow/inference),
[Supervision](https://github.com/roboflow/supervision) and [Ultralytics](https://github.com/ultralytics/ultralytics).🔥
"""
IMAGE_EXAMPLES = [
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.3, 0.5],
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.3, 0.5],
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.3, 0.5],
]
YOLO_V8S_MODEL = YOLO("yolov8m-seg.pt")
YOLO_V9S_MODEL = YOLO("https://huggingface.co/spaces/mbar0075/Segmentation-Playground/resolve/main/yolov9e-seg.pt")
YOLO_11S_MODEL = YOLO("yolo11m-seg.pt")
LABEL_ANNOTATORS = sv.LabelAnnotator()
MASK_ANNOTATORS = sv.MaskAnnotator()
BOUNDING_BOX_ANNOTATORS = sv.BoxAnnotator()
def detect_and_annotate(
model,
input_image: np.ndarray,
confidence_threshold: float,
iou_threshold: float,
class_id_mapping: dict = None
) -> np.ndarray:
result = model(
input_image,
conf=confidence_threshold,
iou=iou_threshold
)[0]
detections = sv.Detections.from_ultralytics(result)
if class_id_mapping:
detections.class_id = np.array([
class_id_mapping[class_id]
for class_id
in detections.class_id
])
labels = [
f"{class_name} ({confidence:.2f})"
for class_name, confidence
in zip(detections['class_name'], detections.confidence)
]
annotated_image = input_image.copy()
annotated_image = MASK_ANNOTATORS.annotate(
scene=annotated_image, detections=detections)
annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATORS.annotate(
scene=annotated_image, detections=detections, labels=labels)
return annotated_image
def process_image(
input_image: np.ndarray,
yolo_v8_confidence_threshold: float,
yolo_v9_confidence_threshold: float,
yolo_v10_confidence_threshold: float,
iou_threshold: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
# Validate iou_threshold before using it
if iou_threshold is None or not isinstance(iou_threshold, float):
iou_threshold = 0.3 # Default value, adjust as necessary
yolo_v8n_annotated_image = detect_and_annotate(
YOLO_V8S_MODEL, input_image, yolo_v8_confidence_threshold, iou_threshold)
yolo_v8s_annotated_image = detect_and_annotate(
YOLO_V9S_MODEL, input_image, yolo_v9_confidence_threshold, iou_threshold)
yolo_8m_annotated_image = detect_and_annotate(
YOLO_11S_MODEL, input_image, yolo_v10_confidence_threshold, iou_threshold)
return (
yolo_v8n_annotated_image,
yolo_v8s_annotated_image,
yolo_8m_annotated_image
)
yolo_v8N_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv8m Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
yolo_v8S_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv9e Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
yolo_v8M_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLO11m Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
iou_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.01,
label="IoU Threshold",
info=(
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
"making the detection process stricter. On the other hand, increase the value "
"to allow more overlapping bounding boxes, accommodating a broader range of "
"detections."
))
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Accordion("Configuration", open=False):
with gr.Row():
yolo_v8N_confidence_threshold_component.render()
yolo_v8S_confidence_threshold_component.render()
yolo_v8M_confidence_threshold_component.render()
iou_threshold_component.render()
with gr.Row():
input_image_component = gr.Image(
type='pil',
label='Input'
)
yolo_v8n_output_image_component = gr.Image(
type='pil',
label='YOLOv8m'
)
with gr.Row():
yolo_v8s_output_image_component = gr.Image(
type='pil',
label='YOLOv9e'
)
yolo_v8m_output_image_component = gr.Image(
type='pil',
label='YOLO11m'
)
submit_button_component = gr.Button(
value='Submit',
scale=1,
variant='primary'
)
gr.Examples(
fn=process_image,
examples=IMAGE_EXAMPLES,
inputs=[
input_image_component,
yolo_v8N_confidence_threshold_component,
yolo_v8S_confidence_threshold_component,
yolo_v8M_confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8n_output_image_component,
yolo_v8s_output_image_component,
yolo_v8m_output_image_component
]
)
submit_button_component.click(
fn=process_image,
inputs=[
input_image_component,
yolo_v8N_confidence_threshold_component,
yolo_v8S_confidence_threshold_component,
yolo_v8M_confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8n_output_image_component,
yolo_v8s_output_image_component,
yolo_v8m_output_image_component
]
)
demo.launch(debug=False, show_error=True, max_threads=1)