Uploading food not food text classifier demo app.py
Browse files- README.md +13 -6
- app.py +62 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +1,19 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.2
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Food Not Food Text Classifier
|
3 |
+
emoji: ππ«π₯
|
4 |
+
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.0.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
# ππ«π₯ Food Not Food Text Classifier
|
14 |
+
|
15 |
+
Small demo to showcase a text classifier to determine if a sentence is about food or not food.
|
16 |
+
|
17 |
+
DistillBERT model fine-tuned on a small synthetic dataset of 250 generated [Food or Not Food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
|
18 |
+
|
19 |
+
[Source code notebook](https://github.com/Adnan-edu/hugging_custom_ai_model).
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# 1. Import the required packages
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from typing import Dict
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# 2. Define our function to use with our model.
|
10 |
+
|
11 |
+
def set_device():
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
device = torch.device("cuda")
|
14 |
+
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
15 |
+
device = torch.device("mps")
|
16 |
+
else:
|
17 |
+
device = torch.device("cpu")
|
18 |
+
return device
|
19 |
+
|
20 |
+
DEVICE = set_device()
|
21 |
+
|
22 |
+
# 1. Create a function to take a String input
|
23 |
+
|
24 |
+
def food_not_food_classifier(text: str) -> Dict[str, float]:
|
25 |
+
# Setup food not food text classifier
|
26 |
+
food_not_food_classifier_pipeline = pipeline(task="text-classification",
|
27 |
+
model="mdarefin/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
|
28 |
+
batch_size=32,
|
29 |
+
device=DEVICE,
|
30 |
+
top_k=None) # top_k = None => Return all possible labels
|
31 |
+
|
32 |
+
# Get the outputs from our pipeline
|
33 |
+
outputs = food_not_food_classifier_pipeline(text)[0]
|
34 |
+
|
35 |
+
# Format output from Gradio
|
36 |
+
|
37 |
+
output_dict = {}
|
38 |
+
for item in outputs:
|
39 |
+
output_dict[item["label"]] = item["score"]
|
40 |
+
|
41 |
+
return output_dict
|
42 |
+
|
43 |
+
# 3. Create a Gradio interface with details about our app
|
44 |
+
description = """
|
45 |
+
A text classifier to determine if a sentence is about food or not food.
|
46 |
+
|
47 |
+
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
|
48 |
+
|
49 |
+
See [source code](https://github.com/Adnan-edu/hugging_custom_ai_model).
|
50 |
+
"""
|
51 |
+
|
52 |
+
demo = gr.Interface(fn=food_not_food_classifier,
|
53 |
+
inputs="text",
|
54 |
+
outputs=gr.Label(num_top_classes=2), # show top 2 classes
|
55 |
+
title="ππ«π₯ Food or Not Food Text Classifier",
|
56 |
+
description=description,
|
57 |
+
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
|
58 |
+
["A delicious photo of a plate of scrambled eggs, bacon and toast."]])
|
59 |
+
|
60 |
+
# 4. Launch the interface
|
61 |
+
if __name__ == "__main__":
|
62 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.0.2
|
2 |
+
torch
|
3 |
+
transformers==4.45.2
|