# 1. Import the required packages import torch import gradio as gr from typing import Dict from transformers import pipeline # 2. Define our function to use with our model. def set_device(): if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available() and torch.backends.mps.is_built(): device = torch.device("mps") else: device = torch.device("cpu") return device DEVICE = set_device() # 1. Create a function to take a String input def food_not_food_classifier(text: str) -> Dict[str, float]: # Setup food not food text classifier food_not_food_classifier_pipeline = pipeline(task="text-classification", model="mdarefin/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", batch_size=32, device=DEVICE, top_k=None) # top_k = None => Return all possible labels # Get the outputs from our pipeline outputs = food_not_food_classifier_pipeline(text)[0] # Format output from Gradio output_dict = {} for item in outputs: output_dict[item["label"]] = item["score"] return output_dict # 3. Create a Gradio interface with details about our app description = """ A text classifier to determine if a sentence is about food or not food. Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions). See [source code](https://github.com/Adnan-edu/hugging_custom_ai_model). """ demo = gr.Interface(fn=food_not_food_classifier, inputs="text", outputs=gr.Label(num_top_classes=2), # show top 2 classes title="🍗🚫🥑 Food or Not Food Text Classifier", description=description, examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."], ["A delicious photo of a plate of scrambled eggs, bacon and toast."]]) # 4. Launch the interface if __name__ == "__main__": demo.launch()