Spaces:
Runtime error
Runtime error
Init commit containing implementation of example based evaluation metrics for multi-label classification presented in Zhang and Zhou (2014) and multiset variant.
Browse files- README.md +39 -6
- multi_label_precision_recall_accuracy_fscore.py +125 -43
- requirements.txt +2 -1
- tests.py +333 -17
README.md
CHANGED
@@ -13,16 +13,49 @@ pinned: false
|
|
13 |
---
|
14 |
|
15 |
# Metric Card for Multi Label Precision Recall Accuracy Fscore
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
### Inputs
|
28 |
*List all input arguments in the format below*
|
|
|
13 |
---
|
14 |
|
15 |
# Metric Card for Multi Label Precision Recall Accuracy Fscore
|
16 |
+
Implementation of example based evaluation metrics for multi-label classification presented in Zhang and Zhou (2014).
|
17 |
|
18 |
+
## How to Use
|
19 |
|
20 |
+
>>> multi_label_precision_recall_accuracy_fscore = evaluate.load("mdocekal/multi_label_precision_recall_accuracy_fscore")
|
21 |
+
>>> results = multi_label_precision_recall_accuracy_fscore.compute(
|
22 |
+
predictions=[
|
23 |
+
["0", "1"],
|
24 |
+
["1", "2"],
|
25 |
+
["0", "1", "2"],
|
26 |
+
],
|
27 |
+
references=[
|
28 |
+
["0", "1"],
|
29 |
+
["1", "2"],
|
30 |
+
["0", "1", "2"],
|
31 |
+
]
|
32 |
+
)
|
33 |
+
>>> print(results)
|
34 |
+
{
|
35 |
+
"precision": 1.0,
|
36 |
+
"recall": 1.0,
|
37 |
+
"accuracy": 1.0,
|
38 |
+
"fscore": 1.0
|
39 |
+
}
|
40 |
|
41 |
+
There is also multiset configuration available, which allows to calculate the metrics for multi-label classification with repeated labels.
|
42 |
+
It uses the same definition as in previous case, but it works with multiset of labels. Thus, intersection, union, and cardinality for multisets are used instead.
|
43 |
|
44 |
+
>>> results = multi_label_precision_recall_accuracy_fscore.compute(
|
45 |
+
predictions=[
|
46 |
+
[0, 1, 1]
|
47 |
+
],
|
48 |
+
references=[
|
49 |
+
[1, 0, 1, 1, 0, 0],
|
50 |
+
]
|
51 |
+
)
|
52 |
+
>>> print(results)
|
53 |
+
{
|
54 |
+
"precision": 1.0,
|
55 |
+
"recall": 0.5,
|
56 |
+
"accuracy": 0.5,
|
57 |
+
"fscore": 0.6666666666666666
|
58 |
+
}
|
59 |
|
60 |
### Inputs
|
61 |
*List all input arguments in the format below*
|
multi_label_precision_recall_accuracy_fscore.py
CHANGED
@@ -11,58 +11,79 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
|
|
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
|
19 |
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
@
|
23 |
-
title
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
-
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
|
38 |
Args:
|
39 |
predictions: list of predictions to score. Each predictions
|
40 |
-
should be a
|
41 |
references: list of reference for each prediction. Each
|
42 |
-
reference should be a
|
43 |
Returns:
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
Examples:
|
47 |
-
Examples should be written in doctest format, and should illustrate how
|
48 |
-
to use the function.
|
49 |
|
50 |
-
>>>
|
51 |
-
>>> results =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
>>> print(results)
|
53 |
-
{
|
|
|
|
|
|
|
|
|
|
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class MultiLabelPrecisionRecallAccuracyFscore(evaluate.Metric):
|
62 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
@@ -70,26 +91,87 @@ class MultiLabelPrecisionRecallAccuracyFscore(evaluate.Metric):
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
-
features=
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
def _compute(self, predictions, references):
|
90 |
-
"""Returns the scores"""
|
91 |
-
# TODO: Compute the different scores of the module
|
92 |
-
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
93 |
return {
|
|
|
|
|
94 |
"accuracy": accuracy,
|
95 |
-
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
|
15 |
+
from collections import Counter
|
16 |
+
from typing import Optional, Union
|
17 |
|
18 |
import evaluate
|
19 |
import datasets
|
20 |
|
21 |
|
|
|
22 |
_CITATION = """\
|
23 |
+
@article{Zhang2014ARO,
|
24 |
+
title={A Review on Multi-Label Learning Algorithms},
|
25 |
+
author={Min-Ling Zhang and Zhi-Hua Zhou},
|
26 |
+
journal={IEEE Transactions on Knowledge and Data Engineering},
|
27 |
+
year={2014},
|
28 |
+
volume={26},
|
29 |
+
pages={1819-1837},
|
30 |
+
url={https://api.semanticscholar.org/CorpusID:1008003}
|
31 |
}
|
32 |
"""
|
33 |
|
|
|
34 |
_DESCRIPTION = """\
|
35 |
+
Implementation of example based evaluation metrics for multi-label classification presented in Zhang and Zhou (2014).
|
36 |
"""
|
37 |
|
|
|
|
|
38 |
_KWARGS_DESCRIPTION = """
|
39 |
+
Implementation of example based evaluation metrics for multi-label classification presented in Zhang and Zhou (2014).
|
40 |
Args:
|
41 |
predictions: list of predictions to score. Each predictions
|
42 |
+
should be a list of predicted labels
|
43 |
references: list of reference for each prediction. Each
|
44 |
+
reference should be a list of reference labels
|
45 |
Returns:
|
46 |
+
precision
|
47 |
+
recall
|
48 |
+
accuracy
|
49 |
+
fscore
|
50 |
Examples:
|
|
|
|
|
51 |
|
52 |
+
>>> multi_label_precision_recall_accuracy_fscore = evaluate.load("mdocekal/multi_label_precision_recall_accuracy_fscore")
|
53 |
+
>>> results = multi_label_precision_recall_accuracy_fscore.compute(
|
54 |
+
predictions=[
|
55 |
+
["0", "1"],
|
56 |
+
["1", "2"],
|
57 |
+
["0", "1", "2"],
|
58 |
+
],
|
59 |
+
references=[
|
60 |
+
["0", "1"],
|
61 |
+
["1", "2"],
|
62 |
+
["0", "1", "2"],
|
63 |
+
]
|
64 |
+
)
|
65 |
>>> print(results)
|
66 |
+
{
|
67 |
+
"precision": 1.0,
|
68 |
+
"recall": 1.0,
|
69 |
+
"accuracy": 1.0,
|
70 |
+
"fscore": 1.0
|
71 |
+
}
|
72 |
"""
|
73 |
|
|
|
|
|
|
|
74 |
|
75 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
76 |
class MultiLabelPrecisionRecallAccuracyFscore(evaluate.Metric):
|
77 |
+
"""
|
78 |
+
Implementation of example based evaluation metrics for multi-label classification presented in Zhang and Zhou (2014).
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(self, *args, **kwargs):
|
82 |
+
super().__init__(*args, **kwargs)
|
83 |
+
self.beta = kwargs.get("beta", 1.0)
|
84 |
+
self.use_multiset = self.config_name == "multiset"
|
85 |
|
86 |
def _info(self):
|
|
|
87 |
return evaluate.MetricInfo(
|
88 |
# This is the description that will appear on the modules page.
|
89 |
module_type="metric",
|
|
|
91 |
citation=_CITATION,
|
92 |
inputs_description=_KWARGS_DESCRIPTION,
|
93 |
# This defines the format of each prediction and reference
|
94 |
+
features=[
|
95 |
+
datasets.Features({
|
96 |
+
'predictions': datasets.Sequence(datasets.Value('int64')),
|
97 |
+
'references': datasets.Sequence(datasets.Value('int64')),
|
98 |
+
}),
|
99 |
+
datasets.Features({
|
100 |
+
'predictions': datasets.Sequence(datasets.Value('string')),
|
101 |
+
'references': datasets.Sequence(datasets.Value('string')),
|
102 |
+
}),
|
103 |
+
]
|
104 |
)
|
105 |
|
106 |
+
def eval_example(self, prediction, reference):
|
107 |
+
if self.use_multiset:
|
108 |
+
prediction = Counter(prediction)
|
109 |
+
reference = Counter(reference)
|
110 |
+
|
111 |
+
intersection_cardinality = sum((prediction & reference).values())
|
112 |
+
union_cardinality = sum((prediction | reference).values())
|
113 |
+
|
114 |
+
prediction_cardinality = sum(prediction.values())
|
115 |
+
reference_cardinality = sum(reference.values())
|
116 |
+
else:
|
117 |
+
prediction = set(prediction)
|
118 |
+
reference = set(reference)
|
119 |
+
|
120 |
+
intersection_cardinality = len(prediction & reference)
|
121 |
+
union_cardinality = len(prediction | reference)
|
122 |
+
|
123 |
+
prediction_cardinality = len(prediction)
|
124 |
+
reference_cardinality = len(reference)
|
125 |
+
|
126 |
+
precision = intersection_cardinality / prediction_cardinality if prediction_cardinality > 0 else 0
|
127 |
+
recall = intersection_cardinality / reference_cardinality if reference_cardinality > 0 else 0
|
128 |
+
accuracy = intersection_cardinality / union_cardinality if union_cardinality > 0 else 0
|
129 |
+
|
130 |
+
return precision, recall, accuracy
|
131 |
+
|
132 |
+
def _compute(self, predictions: list[list[Union[int, str]]], references: list[list[Union[int, str]]],
|
133 |
+
beta: Optional[float] = None) -> dict[str, float]:
|
134 |
+
"""
|
135 |
+
Computes metrics for a list of predictions and references
|
136 |
+
|
137 |
+
Args:
|
138 |
+
predictions: list of predictions to score. Each predictions
|
139 |
+
should be a list of predicted labels
|
140 |
+
references: list of reference for each prediction. Each
|
141 |
+
reference should be a list of reference labels
|
142 |
+
beta: beta value for F-score calculation
|
143 |
+
if None the beta is set to default value
|
144 |
+
Returns: dict with
|
145 |
+
precision
|
146 |
+
recall
|
147 |
+
accuracy
|
148 |
+
fscore
|
149 |
+
"""
|
150 |
+
assert len(predictions) == len(references), "Predictions and references must have the same length"
|
151 |
+
if beta is None:
|
152 |
+
beta = self.beta
|
153 |
+
|
154 |
+
precision, recall, accuracy = 0, 0, 0
|
155 |
+
|
156 |
+
for p, r in zip(predictions, references):
|
157 |
+
p, r, a = self.eval_example(p, r)
|
158 |
+
precision += p
|
159 |
+
recall += r
|
160 |
+
accuracy += a
|
161 |
+
|
162 |
+
precision /= len(predictions)
|
163 |
+
recall /= len(predictions)
|
164 |
+
accuracy /= len(predictions)
|
165 |
+
|
166 |
+
if precision + recall == 0:
|
167 |
+
fscore = 0.0
|
168 |
+
else:
|
169 |
+
fscore = (1 + beta**2) * precision * recall / (beta**2 * precision + recall)
|
170 |
|
|
|
|
|
|
|
|
|
171 |
return {
|
172 |
+
"precision": precision,
|
173 |
+
"recall": recall,
|
174 |
"accuracy": accuracy,
|
175 |
+
"fscore": fscore
|
176 |
+
}
|
177 |
+
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
|
|
|
|
1 |
+
evaluate
|
2 |
+
datasets
|
tests.py
CHANGED
@@ -1,17 +1,333 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unittest import TestCase
|
2 |
+
|
3 |
+
from multi_label_precision_recall_accuracy_fscore import MultiLabelPrecisionRecallAccuracyFscore
|
4 |
+
|
5 |
+
|
6 |
+
class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
7 |
+
"""
|
8 |
+
All of these tests are also used for multiset configuration. So please mind this and write the test in a way that
|
9 |
+
it is valid for both configurations (do not use same label multiple times).
|
10 |
+
"""
|
11 |
+
def setUp(self):
|
12 |
+
self.multi_label_precision_recall_accuracy_fscore = MultiLabelPrecisionRecallAccuracyFscore()
|
13 |
+
|
14 |
+
def test_eok(self):
|
15 |
+
self.assertDictEqual(
|
16 |
+
{
|
17 |
+
"precision": 1.0,
|
18 |
+
"recall": 1.0,
|
19 |
+
"accuracy": 1.0,
|
20 |
+
"fscore": 1.0
|
21 |
+
},
|
22 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
23 |
+
predictions=[
|
24 |
+
[0, 1],
|
25 |
+
[1, 2],
|
26 |
+
[0, 1, 2],
|
27 |
+
],
|
28 |
+
references=[
|
29 |
+
[0, 1],
|
30 |
+
[1, 2],
|
31 |
+
[0, 1, 2],
|
32 |
+
]
|
33 |
+
)
|
34 |
+
)
|
35 |
+
|
36 |
+
def test_eok_string(self):
|
37 |
+
self.assertDictEqual(
|
38 |
+
{
|
39 |
+
"precision": 1.0,
|
40 |
+
"recall": 1.0,
|
41 |
+
"accuracy": 1.0,
|
42 |
+
"fscore": 1.0
|
43 |
+
},
|
44 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
45 |
+
predictions=[
|
46 |
+
["0", "1"],
|
47 |
+
["1", "2"],
|
48 |
+
["0", "1", "2"],
|
49 |
+
],
|
50 |
+
references=[
|
51 |
+
["0", "1"],
|
52 |
+
["1", "2"],
|
53 |
+
["0", "1", "2"],
|
54 |
+
]
|
55 |
+
)
|
56 |
+
)
|
57 |
+
|
58 |
+
def test_empty(self):
|
59 |
+
self.assertDictEqual(
|
60 |
+
{
|
61 |
+
"precision": 0.0,
|
62 |
+
"recall": 0.0,
|
63 |
+
"accuracy": 0.0,
|
64 |
+
"fscore": 0.0
|
65 |
+
},
|
66 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
67 |
+
predictions=[
|
68 |
+
[],
|
69 |
+
[],
|
70 |
+
[],
|
71 |
+
],
|
72 |
+
references=[
|
73 |
+
[],
|
74 |
+
[],
|
75 |
+
[],
|
76 |
+
]
|
77 |
+
)
|
78 |
+
)
|
79 |
+
|
80 |
+
def test_empty_reference(self):
|
81 |
+
self.assertDictEqual(
|
82 |
+
{
|
83 |
+
"precision": 0.0,
|
84 |
+
"recall": 0.0,
|
85 |
+
"accuracy": 0.0,
|
86 |
+
"fscore": 0.0
|
87 |
+
},
|
88 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
89 |
+
predictions=[
|
90 |
+
[0, 1],
|
91 |
+
[1, 2],
|
92 |
+
[0, 1, 2],
|
93 |
+
],
|
94 |
+
references=[
|
95 |
+
[],
|
96 |
+
[],
|
97 |
+
[],
|
98 |
+
]
|
99 |
+
)
|
100 |
+
)
|
101 |
+
|
102 |
+
def test_empty_prediction(self):
|
103 |
+
self.assertDictEqual(
|
104 |
+
{
|
105 |
+
"precision": 0.0,
|
106 |
+
"recall": 0.0,
|
107 |
+
"accuracy": 0.0,
|
108 |
+
"fscore": 0.0
|
109 |
+
},
|
110 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
111 |
+
predictions=[
|
112 |
+
[],
|
113 |
+
[],
|
114 |
+
[],
|
115 |
+
],
|
116 |
+
references=[
|
117 |
+
[0, 1],
|
118 |
+
[1, 2],
|
119 |
+
[0, 1, 2],
|
120 |
+
]
|
121 |
+
)
|
122 |
+
)
|
123 |
+
|
124 |
+
def test_completely_different(self):
|
125 |
+
self.assertDictEqual(
|
126 |
+
{
|
127 |
+
"precision": 0.0,
|
128 |
+
"recall": 0.0,
|
129 |
+
"accuracy": 0.0,
|
130 |
+
"fscore": 0.0
|
131 |
+
},
|
132 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
133 |
+
predictions=[
|
134 |
+
[0, 1],
|
135 |
+
[1, 2],
|
136 |
+
[0, 1, 2],
|
137 |
+
],
|
138 |
+
references=[
|
139 |
+
[3, 4],
|
140 |
+
[5, 6],
|
141 |
+
[7, 8, 9],
|
142 |
+
]
|
143 |
+
)
|
144 |
+
)
|
145 |
+
|
146 |
+
def test_max_precision(self):
|
147 |
+
self.assertDictEqual(
|
148 |
+
{
|
149 |
+
"precision": 1.0,
|
150 |
+
"recall": 0.5,
|
151 |
+
"accuracy": 0.5,
|
152 |
+
"fscore": 2/3
|
153 |
+
},
|
154 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
155 |
+
predictions=[
|
156 |
+
[0, 1]
|
157 |
+
],
|
158 |
+
references=[
|
159 |
+
[0, 1, 2, 3]
|
160 |
+
]
|
161 |
+
)
|
162 |
+
)
|
163 |
+
|
164 |
+
def test_max_recall(self):
|
165 |
+
self.assertDictEqual(
|
166 |
+
{
|
167 |
+
"precision": 0.5,
|
168 |
+
"recall": 1.0,
|
169 |
+
"accuracy": 0.5,
|
170 |
+
"fscore": 2/3
|
171 |
+
},
|
172 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
173 |
+
predictions=[
|
174 |
+
[0, 1, 2, 3]
|
175 |
+
],
|
176 |
+
references=[
|
177 |
+
[0, 1]
|
178 |
+
]
|
179 |
+
)
|
180 |
+
)
|
181 |
+
|
182 |
+
def test_partial_match(self):
|
183 |
+
self.assertDictEqual(
|
184 |
+
{
|
185 |
+
"precision": 0.5,
|
186 |
+
"recall": 0.5,
|
187 |
+
"accuracy": 1/3,
|
188 |
+
"fscore": 0.5
|
189 |
+
},
|
190 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
191 |
+
predictions=[
|
192 |
+
[0, 1]
|
193 |
+
],
|
194 |
+
references=[
|
195 |
+
[0, 2]
|
196 |
+
]
|
197 |
+
)
|
198 |
+
)
|
199 |
+
|
200 |
+
def test_partial_match_multi_sample(self):
|
201 |
+
self.assertDictEqual(
|
202 |
+
{
|
203 |
+
"precision": 2.5/3,
|
204 |
+
"recall": 2/3,
|
205 |
+
"accuracy": 0.5,
|
206 |
+
"fscore": 2*(2.5/3 * 2/3) / (2.5/3 + 2/3)
|
207 |
+
},
|
208 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
209 |
+
predictions=[
|
210 |
+
[0, 1],
|
211 |
+
[0, 1],
|
212 |
+
[2, 3]
|
213 |
+
],
|
214 |
+
references=[
|
215 |
+
[0, 1, 2, 3],
|
216 |
+
[0, 1, 2, 3],
|
217 |
+
[2]
|
218 |
+
]
|
219 |
+
)
|
220 |
+
)
|
221 |
+
|
222 |
+
def test_beta(self):
|
223 |
+
self.multi_label_precision_recall_accuracy_fscore.beta = 2
|
224 |
+
self.assertDictEqual(
|
225 |
+
{
|
226 |
+
"precision": 2.5/3,
|
227 |
+
"recall": 2/3,
|
228 |
+
"accuracy": 0.5,
|
229 |
+
"fscore": 5*(2.5/3 * 2/3) / (4*2.5/3 + 2/3)
|
230 |
+
},
|
231 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
232 |
+
predictions=[
|
233 |
+
[0, 1],
|
234 |
+
[0, 1],
|
235 |
+
[2, 3]
|
236 |
+
],
|
237 |
+
references=[
|
238 |
+
[0, 1, 2, 3],
|
239 |
+
[0, 1, 2, 3],
|
240 |
+
[2]
|
241 |
+
]
|
242 |
+
)
|
243 |
+
)
|
244 |
+
self.assertDictEqual(
|
245 |
+
{
|
246 |
+
"precision": 2.5 / 3,
|
247 |
+
"recall": 2 / 3,
|
248 |
+
"accuracy": 0.5,
|
249 |
+
"fscore": 10 * (2.5 / 3 * 2 / 3) / (9 * 2.5 / 3 + 2 / 3)
|
250 |
+
},
|
251 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
252 |
+
predictions=[
|
253 |
+
[0, 1],
|
254 |
+
[0, 1],
|
255 |
+
[2, 3]
|
256 |
+
],
|
257 |
+
references=[
|
258 |
+
[0, 1, 2, 3],
|
259 |
+
[0, 1, 2, 3],
|
260 |
+
[2]
|
261 |
+
],
|
262 |
+
beta=3
|
263 |
+
)
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
class MultiLabelPrecisionRecallAccuracyFscoreTestMultiset(MultiLabelPrecisionRecallAccuracyFscoreTest):
|
268 |
+
def setUp(self):
|
269 |
+
self.multi_label_precision_recall_accuracy_fscore = MultiLabelPrecisionRecallAccuracyFscore(config_name="multiset")
|
270 |
+
|
271 |
+
def test_multiset_eok(self):
|
272 |
+
self.assertDictEqual(
|
273 |
+
{
|
274 |
+
"precision": 1.0,
|
275 |
+
"recall": 1.0,
|
276 |
+
"accuracy": 1.0,
|
277 |
+
"fscore": 1.0
|
278 |
+
},
|
279 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
280 |
+
predictions=[
|
281 |
+
[0, 1, 1],
|
282 |
+
[1, 2, 2],
|
283 |
+
[0, 1, 2, 1],
|
284 |
+
],
|
285 |
+
references=[
|
286 |
+
[1, 0, 1],
|
287 |
+
[1, 2, 2],
|
288 |
+
[0, 1, 1, 2],
|
289 |
+
]
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
293 |
+
def test_multiset_partial_match(self):
|
294 |
+
|
295 |
+
self.assertDictEqual(
|
296 |
+
{
|
297 |
+
"precision": 1.0,
|
298 |
+
"recall": 0.5,
|
299 |
+
"accuracy": 0.5,
|
300 |
+
"fscore": 2/3
|
301 |
+
},
|
302 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
303 |
+
predictions=[
|
304 |
+
[0, 1, 1]
|
305 |
+
],
|
306 |
+
references=[
|
307 |
+
[1, 0, 1, 1, 0, 0],
|
308 |
+
]
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
def test_multiset_partial_match_multi_sample(self):
|
313 |
+
p = (1+2/3) / 2
|
314 |
+
r = (3/4 + 1) / 2
|
315 |
+
|
316 |
+
self.assertDictEqual(
|
317 |
+
{
|
318 |
+
"precision": p,
|
319 |
+
"recall": r,
|
320 |
+
"accuracy": (3/4 + 2/3) / 2,
|
321 |
+
"fscore": 2*p*r / (p + r)
|
322 |
+
},
|
323 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
324 |
+
predictions=[
|
325 |
+
[0, 1, 1],
|
326 |
+
[1, 2, 2]
|
327 |
+
],
|
328 |
+
references=[
|
329 |
+
[1, 0, 1, 1],
|
330 |
+
[1, 2],
|
331 |
+
]
|
332 |
+
)
|
333 |
+
)
|