AMT / networks /blocks /ifrnet.py
measior's picture
Duplicate from NKU-AMT/AMT
2fb3163
raw
history blame
4.35 kB
'''
This code are partially borrowed from IFRNet (https://github.com/ltkong218/IFRNet).
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import warp
def resize(x, scale_factor):
return F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False)
def convrelu(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=bias),
nn.PReLU(out_channels)
)
class ResBlock(nn.Module):
def __init__(self, in_channels, side_channels, bias=True):
super(ResBlock, self).__init__()
self.side_channels = side_channels
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=bias),
nn.PReLU(in_channels)
)
self.conv2 = nn.Sequential(
nn.Conv2d(side_channels, side_channels, kernel_size=3, stride=1, padding=1, bias=bias),
nn.PReLU(side_channels)
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=bias),
nn.PReLU(in_channels)
)
self.conv4 = nn.Sequential(
nn.Conv2d(side_channels, side_channels, kernel_size=3, stride=1, padding=1, bias=bias),
nn.PReLU(side_channels)
)
self.conv5 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=bias)
self.prelu = nn.PReLU(in_channels)
def forward(self, x):
out = self.conv1(x)
res_feat = out[:, :-self.side_channels, ...]
side_feat = out[:, -self.side_channels:, :, :]
side_feat = self.conv2(side_feat)
out = self.conv3(torch.cat([res_feat, side_feat], 1))
res_feat = out[:, :-self.side_channels, ...]
side_feat = out[:, -self.side_channels:, :, :]
side_feat = self.conv4(side_feat)
out = self.conv5(torch.cat([res_feat, side_feat], 1))
out = self.prelu(x + out)
return out
class Encoder(nn.Module):
def __init__(self, channels, large=False):
super(Encoder, self).__init__()
self.channels = channels
prev_ch = 3
for idx, ch in enumerate(channels, 1):
k = 7 if large and idx == 1 else 3
p = 3 if k ==7 else 1
self.register_module(f'pyramid{idx}',
nn.Sequential(
convrelu(prev_ch, ch, k, 2, p),
convrelu(ch, ch, 3, 1, 1)
))
prev_ch = ch
def forward(self, in_x):
fs = []
for idx in range(len(self.channels)):
out_x = getattr(self, f'pyramid{idx+1}')(in_x)
fs.append(out_x)
in_x = out_x
return fs
class InitDecoder(nn.Module):
def __init__(self, in_ch, out_ch, skip_ch) -> None:
super().__init__()
self.convblock = nn.Sequential(
convrelu(in_ch*2+1, in_ch*2),
ResBlock(in_ch*2, skip_ch),
nn.ConvTranspose2d(in_ch*2, out_ch+4, 4, 2, 1, bias=True)
)
def forward(self, f0, f1, embt):
h, w = f0.shape[2:]
embt = embt.repeat(1, 1, h, w)
out = self.convblock(torch.cat([f0, f1, embt], 1))
flow0, flow1 = torch.chunk(out[:, :4, ...], 2, 1)
ft_ = out[:, 4:, ...]
return flow0, flow1, ft_
class IntermediateDecoder(nn.Module):
def __init__(self, in_ch, out_ch, skip_ch) -> None:
super().__init__()
self.convblock = nn.Sequential(
convrelu(in_ch*3+4, in_ch*3),
ResBlock(in_ch*3, skip_ch),
nn.ConvTranspose2d(in_ch*3, out_ch+4, 4, 2, 1, bias=True)
)
def forward(self, ft_, f0, f1, flow0_in, flow1_in):
f0_warp = warp(f0, flow0_in)
f1_warp = warp(f1, flow1_in)
f_in = torch.cat([ft_, f0_warp, f1_warp, flow0_in, flow1_in], 1)
out = self.convblock(f_in)
flow0, flow1 = torch.chunk(out[:, :4, ...], 2, 1)
ft_ = out[:, 4:, ...]
flow0 = flow0 + 2.0 * resize(flow0_in, scale_factor=2.0)
flow1 = flow1 + 2.0 * resize(flow1_in, scale_factor=2.0)
return flow0, flow1, ft_