|
import torch |
|
import torch.nn as nn |
|
from utils import warp |
|
from networks.blocks.ifrnet import ( |
|
convrelu, resize, |
|
ResBlock, |
|
) |
|
|
|
def multi_flow_combine(comb_block, img0, img1, flow0, flow1, |
|
mask=None, img_res=None, mean=None): |
|
''' |
|
A parallel implementation of multiple flow field warping |
|
comb_block: A nn.Seqential object. |
|
img shape: [b, c, h, w] |
|
flow shape: [b, 2*num_flows, h, w] |
|
mask (opt): |
|
If 'mask' is None, the function conduct a simple average. |
|
img_res (opt): |
|
If 'img_res' is None, the function adds zero instead. |
|
mean (opt): |
|
If 'mean' is None, the function adds zero instead. |
|
''' |
|
b, c, h, w = flow0.shape |
|
num_flows = c // 2 |
|
flow0 = flow0.reshape(b, num_flows, 2, h, w).reshape(-1, 2, h, w) |
|
flow1 = flow1.reshape(b, num_flows, 2, h, w).reshape(-1, 2, h, w) |
|
|
|
mask = mask.reshape(b, num_flows, 1, h, w |
|
).reshape(-1, 1, h, w) if mask is not None else None |
|
img_res = img_res.reshape(b, num_flows, 3, h, w |
|
).reshape(-1, 3, h, w) if img_res is not None else 0 |
|
img0 = torch.stack([img0] * num_flows, 1).reshape(-1, 3, h, w) |
|
img1 = torch.stack([img1] * num_flows, 1).reshape(-1, 3, h, w) |
|
mean = torch.stack([mean] * num_flows, 1).reshape(-1, 1, 1, 1 |
|
) if mean is not None else 0 |
|
|
|
img0_warp = warp(img0, flow0) |
|
img1_warp = warp(img1, flow1) |
|
img_warps = mask * img0_warp + (1 - mask) * img1_warp + mean + img_res |
|
img_warps = img_warps.reshape(b, num_flows, 3, h, w) |
|
imgt_pred = img_warps.mean(1) + comb_block(img_warps.view(b, -1, h, w)) |
|
return imgt_pred |
|
|
|
class MultiFlowDecoder(nn.Module): |
|
def __init__(self, in_ch, skip_ch, num_flows=3): |
|
super(MultiFlowDecoder, self).__init__() |
|
self.num_flows = num_flows |
|
self.convblock = nn.Sequential( |
|
convrelu(in_ch*3+4, in_ch*3), |
|
ResBlock(in_ch*3, skip_ch), |
|
nn.ConvTranspose2d(in_ch*3, 8*num_flows, 4, 2, 1, bias=True) |
|
) |
|
|
|
def forward(self, ft_, f0, f1, flow0, flow1): |
|
n = self.num_flows |
|
f0_warp = warp(f0, flow0) |
|
f1_warp = warp(f1, flow1) |
|
out = self.convblock(torch.cat([ft_, f0_warp, f1_warp, flow0, flow1], 1)) |
|
delta_flow0, delta_flow1, mask, img_res = torch.split(out, [2*n, 2*n, n, 3*n], 1) |
|
mask = torch.sigmoid(mask) |
|
|
|
flow0 = delta_flow0 + 2.0 * resize(flow0, scale_factor=2.0 |
|
).repeat(1, self.num_flows, 1, 1) |
|
flow1 = delta_flow1 + 2.0 * resize(flow1, scale_factor=2.0 |
|
).repeat(1, self.num_flows, 1, 1) |
|
|
|
return flow0, flow1, mask, img_res |