File size: 73,593 Bytes
0dcccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
"""Modified from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
"""
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import gc
import logging
import math
import os
import pickle
import shutil
import sys

import accelerate
import diffusers
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers import AutoencoderKL, DDPMScheduler
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
from einops import rearrange
from huggingface_hub import create_repo, upload_folder
from omegaconf import OmegaConf
from packaging import version
from PIL import Image
from torch.utils.data import RandomSampler
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor,
                          CLIPVisionModelWithProjection, MT5Tokenizer,
                          T5EncoderModel, T5Tokenizer)
from transformers.utils import ContextManagers

import datasets

current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path))]
for project_root in project_roots:
    sys.path.insert(0, project_root) if project_root not in sys.path else None

from cogvideox.data.bucket_sampler import (ASPECT_RATIO_512,
                                           ASPECT_RATIO_RANDOM_CROP_512,
                                           ASPECT_RATIO_RANDOM_CROP_PROB,
                                           AspectRatioBatchImageVideoSampler,
                                           RandomSampler, get_closest_ratio)
from cogvideox.data.dataset_image_video import (ImageVideoDataset, ImageVideoControlDataset,
                                                ImageVideoSampler,
                                                get_random_mask)
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel
from cogvideox.pipeline.pipeline_cogvideox_control import \
    CogVideoX_Fun_Pipeline_Control
from cogvideox.utils.utils import get_video_to_video_latent, save_videos_grid

if is_wandb_available():
    import wandb


def get_random_downsample_ratio(sample_size, image_ratio=[],
                                all_choices=False, rng=None):
    def _create_special_list(length):
        if length == 1:
            return [1.0]
        if length >= 2:
            first_element = 0.75
            remaining_sum = 1.0 - first_element
            other_elements_value = remaining_sum / (length - 1)
            special_list = [first_element] + [other_elements_value] * (length - 1)
            return special_list
            
    if sample_size >= 1536:
        number_list = [1, 1.25, 1.5, 2, 2.5, 3] + image_ratio 
    elif sample_size >= 1024:
        number_list = [1, 1.25, 1.5, 2] + image_ratio
    elif sample_size >= 768:
        number_list = [1, 1.25, 1.5] + image_ratio
    elif sample_size >= 512:
        number_list = [1] + image_ratio
    else:
        number_list = [1]

    if all_choices:
        return number_list

    number_list_prob = np.array(_create_special_list(len(number_list)))
    if rng is None:
        return np.random.choice(number_list, p = number_list_prob)
    else:
        return rng.choice(number_list, p = number_list_prob)

def resize_mask(mask, latent, process_first_frame_only=True):
    latent_size = latent.size()
    batch_size, channels, num_frames, height, width = mask.shape

    if process_first_frame_only:
        target_size = list(latent_size[2:])
        target_size[0] = 1
        first_frame_resized = F.interpolate(
            mask[:, :, 0:1, :, :],
            size=target_size,
            mode='trilinear',
            align_corners=False
        )
        
        target_size = list(latent_size[2:])
        target_size[0] = target_size[0] - 1
        if target_size[0] != 0:
            remaining_frames_resized = F.interpolate(
                mask[:, :, 1:, :, :],
                size=target_size,
                mode='trilinear',
                align_corners=False
            )
            resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
        else:
            resized_mask = first_frame_resized
    else:
        target_size = list(latent_size[2:])
        resized_mask = F.interpolate(
            mask,
            size=target_size,
            mode='trilinear',
            align_corners=False
        )
    return resized_mask

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")

logger = get_logger(__name__, log_level="INFO")

def log_validation(vae, text_encoder, tokenizer, transformer3d, args, accelerator, weight_dtype, global_step):
    try:
        logger.info("Running validation... ")
            
        transformer3d_val = CogVideoXTransformer3DModel.from_pretrained_2d(
            args.pretrained_model_name_or_path, subfolder="transformer"
        ).to(weight_dtype)
        transformer3d_val.load_state_dict(accelerator.unwrap_model(transformer3d).state_dict())

        pipeline = CogVideoX_Fun_Pipeline_Control.from_pretrained(
            args.pretrained_model_name_or_path, 
            vae=accelerator.unwrap_model(vae).to(weight_dtype), 
            text_encoder=accelerator.unwrap_model(text_encoder),
            tokenizer=tokenizer,
            transformer=transformer3d_val,
            torch_dtype=weight_dtype,
        )
        pipeline = pipeline.to(accelerator.device)

        if args.seed is None:
            generator = None
        else:
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

        images = []
        for i in range(len(args.validation_prompts)):
            with torch.no_grad():
                with torch.autocast("cuda", dtype=weight_dtype):
                    video_length = int(args.video_sample_n_frames // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if args.video_sample_n_frames != 1 else 1
                    input_video, input_video_mask, clip_image = get_video_to_video_latent(args.validation_paths[i], video_length=video_length, sample_size=[args.video_sample_size, args.video_sample_size])
                    sample = pipeline(
                        args.validation_prompts[i], 
                        num_frames = video_length,
                        negative_prompt = "bad detailed",
                        height      = args.video_sample_size,
                        width       = args.video_sample_size,
                        generator   = generator, 

                        control_video = input_video,
                    ).videos
                    os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True)
                    save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-{i}.gif"))

        del pipeline
        del transformer3d_val
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

        return images
    except Exception as e:
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()
        print(f"Eval error with info {e}")
        return None

def linear_decay(initial_value, final_value, total_steps, current_step):
    if current_step >= total_steps:
        return final_value
    current_step = max(0, current_step)
    step_size = (final_value - initial_value) / total_steps
    current_value = initial_value + step_size * current_step
    return current_value

def generate_timestep_with_lognorm(low, high, shape, device="cpu", generator=None):
    u = torch.normal(mean=0.0, std=1.0, size=shape, device=device, generator=generator)
    t = 1 / (1 + torch.exp(-u)) * (high - low) + low
    return torch.clip(t.to(torch.int32), low, high - 1)

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. "
        ),
    )
    parser.add_argument(
        "--train_data_meta",
        type=str,
        default=None,
        help=(
            "A csv containing the training data. "
        ),
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--validation_paths",
        type=str,
        default=None,
        nargs="+",
        help=("A set of control videos evaluated every `--validation_epochs` and logged to `--report_to`."),
    )
    parser.add_argument(
        "--validation_prompts",
        type=str,
        default=None,
        nargs="+",
        help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="sd-model-finetuned",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--use_came",
        action="store_true",
        help="whether to use came",
    )
    parser.add_argument(
        "--multi_stream",
        action="store_true",
        help="whether to use cuda multi-stream",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--vae_mini_batch", type=int, default=32, help="mini batch size for vae."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
    parser.add_argument(
        "--non_ema_revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
            " remote repository specified with --pretrained_model_name_or_path."
        ),
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--prediction_type",
        type=str,
        default=None,
        help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.",
    )
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--report_model_info", action="store_true", help="Whether or not to report more info about model (such as norm, grad)."
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=5,
        help="Run validation every X epochs.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=2000,
        help="Run validation every X steps.",
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="text2image-fine-tune",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )
    
    parser.add_argument(
        "--snr_loss", action="store_true", help="Whether or not to use snr_loss."
    )
    parser.add_argument(
        "--not_sigma_loss", action="store_true", help="Whether or not to not use sigma_loss."
    )
    parser.add_argument(
        "--enable_text_encoder_in_dataloader", action="store_true", help="Whether or not to use text encoder in dataloader."
    )
    parser.add_argument(
        "--enable_bucket", action="store_true", help="Whether enable bucket sample in datasets."
    )
    parser.add_argument(
        "--random_ratio_crop", action="store_true", help="Whether enable random ratio crop sample in datasets."
    )
    parser.add_argument(
        "--random_frame_crop", action="store_true", help="Whether enable random frame crop sample in datasets."
    )
    parser.add_argument(
        "--random_hw_adapt", action="store_true", help="Whether enable random adapt height and width in datasets."
    )
    parser.add_argument(
        "--training_with_video_token_length", action="store_true", help="The training stage of the model in training.",
    )
    parser.add_argument(
        "--motion_sub_loss", action="store_true", help="Whether enable motion sub loss."
    )
    parser.add_argument(
        "--motion_sub_loss_ratio", type=float, default=0.25, help="The ratio of motion sub loss."
    )
    parser.add_argument(
        "--train_sampling_steps",
        type=int,
        default=1000,
        help="Run train_sampling_steps.",
    )
    parser.add_argument(
        "--keep_all_node_same_token_length",
        action="store_true", 
        help="Reference of the length token.",
    )
    parser.add_argument(
        "--token_sample_size",
        type=int,
        default=512,
        help="Sample size of the token.",
    )
    parser.add_argument(
        "--video_sample_size",
        type=int,
        default=512,
        help="Sample size of the video.",
    )
    parser.add_argument(
        "--image_sample_size",
        type=int,
        default=512,
        help="Sample size of the video.",
    )
    parser.add_argument(
        "--video_sample_stride",
        type=int,
        default=4,
        help="Sample stride of the video.",
    )
    parser.add_argument(
        "--video_sample_n_frames",
        type=int,
        default=17,
        help="Num frame of video.",
    )
    parser.add_argument(
        "--video_repeat",
        type=int,
        default=0,
        help="Num of repeat video.",
    )
    parser.add_argument(
        "--transformer_path",
        type=str,
        default=None,
        help=("If you want to load the weight from other transformers, input its path."),
    )
    parser.add_argument(
        "--vae_path",
        type=str,
        default=None,
        help=("If you want to load the weight from other vaes, input its path."),
    )

    parser.add_argument(
        '--trainable_modules', 
        nargs='+', 
        help='Enter a list of trainable modules'
    )
    parser.add_argument(
        '--trainable_modules_low_learning_rate', 
        nargs='+', 
        default=[],
        help='Enter a list of trainable modules with lower learning rate'
    )
    parser.add_argument(
        '--tokenizer_max_length', 
        type=int,
        default=226,
        help='Max length of tokenizer'
    )
    parser.add_argument(
        "--use_deepspeed", action="store_true", help="Whether or not to use deepspeed."
    )
    parser.add_argument(
        "--low_vram", action="store_true", help="Whether enable low_vram mode."
    )
    parser.add_argument(
        "--abnormal_norm_clip_start",
        type=int,
        default=1000,
        help=(
            'When do we start doing additional processing on abnormal gradients. '
        ),
    )
    parser.add_argument(
        "--initial_grad_norm_ratio",
        type=int,
        default=5,
        help=(
            'The initial gradient is relative to the multiple of the max_grad_norm. '
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # default to using the same revision for the non-ema model if not specified
    if args.non_ema_revision is None:
        args.non_ema_revision = args.revision

    return args


def main():
    args = parse_args()

    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    if args.non_ema_revision is not None:
        deprecate(
            "non_ema_revision!=None",
            "0.15.0",
            message=(
                "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
                " use `--variant=non_ema` instead."
            ),
        )
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
    )
    if accelerator.is_main_process:
        writer = SummaryWriter(log_dir=logging_dir)

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)
        rng = np.random.default_rng(np.random.PCG64(args.seed + accelerator.process_index))
        torch_rng = torch.Generator(accelerator.device).manual_seed(args.seed + accelerator.process_index)
    else:
        rng = None
        torch_rng = None
    index_rng = np.random.default_rng(np.random.PCG64(43))
    print(f"Init rng with seed {args.seed + accelerator.process_index}. Process_index is {accelerator.process_index}")

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora transformer3d) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        args.mixed_precision = accelerator.mixed_precision
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        args.mixed_precision = accelerator.mixed_precision

    # Load scheduler, tokenizer and models.
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

    tokenizer = T5Tokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )

    def deepspeed_zero_init_disabled_context_manager():
        """
        returns either a context list that includes one that will disable zero.Init or an empty context list
        """
        deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None
        if deepspeed_plugin is None:
            return []

        return [deepspeed_plugin.zero3_init_context_manager(enable=False)]

    # Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3.
    # For this to work properly all models must be run through `accelerate.prepare`. But accelerate
    # will try to assign the same optimizer with the same weights to all models during
    # `deepspeed.initialize`, which of course doesn't work.
    #
    # For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2
    # frozen models from being partitioned during `zero.Init` which gets called during
    # `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding
    # across multiple gpus and only UNet2DConditionModel will get ZeRO sharded.
    with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
        text_encoder = T5EncoderModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant,
            torch_dtype=weight_dtype
        )

        vae = AutoencoderKLCogVideoX.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
        )

    transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d(
        args.pretrained_model_name_or_path, subfolder="transformer"
    )

    # Freeze vae and text_encoder and set transformer3d to trainable
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    transformer3d.requires_grad_(False)

    if args.transformer_path is not None:
        print(f"From checkpoint: {args.transformer_path}")
        if args.transformer_path.endswith("safetensors"):
            from safetensors.torch import load_file, safe_open
            state_dict = load_file(args.transformer_path)
        else:
            state_dict = torch.load(args.transformer_path, map_location="cpu")
        state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

        m, u = transformer3d.load_state_dict(state_dict, strict=False)
        print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
        assert len(u) == 0

    if args.vae_path is not None:
        print(f"From checkpoint: {args.vae_path}")
        if args.vae_path.endswith("safetensors"):
            from safetensors.torch import load_file, safe_open
            state_dict = load_file(args.vae_path)
        else:
            state_dict = torch.load(args.vae_path, map_location="cpu")
        state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

        m, u = vae.load_state_dict(state_dict, strict=False)
        print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
        assert len(u) == 0
    
    # A good trainable modules is showed below now.
    # For 3D Patch: trainable_modules = ['ff.net', 'pos_embed', 'attn2', 'proj_out', 'timepositionalencoding', 'h_position', 'w_position']
    # For 2D Patch: trainable_modules = ['ff.net', 'attn2', 'timepositionalencoding', 'h_position', 'w_position']
    transformer3d.train()
    if accelerator.is_main_process:
        accelerator.print(
            f"Trainable modules '{args.trainable_modules}'."
        )
    for name, param in transformer3d.named_parameters():
        for trainable_module_name in args.trainable_modules + args.trainable_modules_low_learning_rate:
            if trainable_module_name in name:
                param.requires_grad = True
                break

    # Create EMA for the transformer3d.
    if args.use_ema:
        ema_transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d(
            args.pretrained_model_name_or_path, subfolder="transformer"
        )
        ema_transformer3d = EMAModel(ema_transformer3d.parameters(), model_cls=CogVideoXTransformer3DModel, model_config=ema_transformer3d.config)

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if accelerator.is_main_process:
                if args.use_ema:
                    ema_transformer3d.save_pretrained(os.path.join(output_dir, "transformer_ema"))

                models[0].save_pretrained(os.path.join(output_dir, "transformer"))
                if not args.use_deepspeed:
                    weights.pop()

                with open(os.path.join(output_dir, "sampler_pos_start.pkl"), 'wb') as file:
                    pickle.dump([batch_sampler.sampler._pos_start, first_epoch], file)

        def load_model_hook(models, input_dir):
            if args.use_ema:
                ema_path = os.path.join(input_dir, "transformer_ema")
                _, ema_kwargs = CogVideoXTransformer3DModel.load_config(ema_path, return_unused_kwargs=True)
                load_model = CogVideoXTransformer3DModel.from_pretrained_2d(
                    input_dir, subfolder="transformer_ema"
                )
                load_model = EMAModel(load_model.parameters(), model_cls=CogVideoXTransformer3DModel, model_config=load_model.config)
                load_model.load_state_dict(ema_kwargs)

                ema_transformer3d.load_state_dict(load_model.state_dict())
                ema_transformer3d.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = CogVideoXTransformer3DModel.from_pretrained_2d(
                    input_dir, subfolder="transformer"
                )
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

            pkl_path = os.path.join(input_dir, "sampler_pos_start.pkl")
            if os.path.exists(pkl_path):
                with open(pkl_path, 'rb') as file:
                    loaded_number, _ = pickle.load(file)
                    batch_sampler.sampler._pos_start = max(loaded_number - args.dataloader_num_workers * accelerator.num_processes * 2, 0)
                print(f"Load pkl from {pkl_path}. Get loaded_number = {loaded_number}.")

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    if args.gradient_checkpointing:
        transformer3d.enable_gradient_checkpointing()

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    elif args.use_came:
        try:
            from came_pytorch import CAME
        except:
            raise ImportError(
                "Please install came_pytorch to use CAME. You can do so by running `pip install came_pytorch`"
            )

        optimizer_cls = CAME
    else:
        optimizer_cls = torch.optim.AdamW

    trainable_params = list(filter(lambda p: p.requires_grad, transformer3d.parameters()))
    trainable_params_optim = [
        {'params': [], 'lr': args.learning_rate},
        {'params': [], 'lr': args.learning_rate / 2},
    ]
    in_already = []
    for name, param in transformer3d.named_parameters():
        high_lr_flag = False
        if name in in_already:
            continue
        for trainable_module_name in args.trainable_modules:
            if trainable_module_name in name:
                in_already.append(name)
                high_lr_flag = True
                trainable_params_optim[0]['params'].append(param)
                if accelerator.is_main_process:
                    print(f"Set {name} to lr : {args.learning_rate}")
                break
        if high_lr_flag:
            continue
        for trainable_module_name in args.trainable_modules_low_learning_rate:
            if trainable_module_name in name:
                in_already.append(name)
                trainable_params_optim[1]['params'].append(param)
                if accelerator.is_main_process:
                    print(f"Set {name} to lr : {args.learning_rate / 2}")
                break

    if args.use_came:
        optimizer = optimizer_cls(
            trainable_params_optim,
            lr=args.learning_rate,
            # weight_decay=args.adam_weight_decay,
            betas=(0.9, 0.999, 0.9999), 
            eps=(1e-30, 1e-16)
        )
    else:
        optimizer = optimizer_cls(
            trainable_params_optim,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )

    # Get the training dataset
    sample_n_frames_bucket_interval = 4

    train_dataset = ImageVideoControlDataset(
        args.train_data_meta, args.train_data_dir,
        video_sample_size=args.video_sample_size, video_sample_stride=args.video_sample_stride, video_sample_n_frames=args.video_sample_n_frames, 
        video_repeat=args.video_repeat, 
        image_sample_size=args.image_sample_size,
        enable_bucket=args.enable_bucket, enable_inpaint=False,
    )
    
    if args.enable_bucket:
        aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
        aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()}

        batch_sampler_generator = torch.Generator().manual_seed(args.seed)
        batch_sampler = AspectRatioBatchImageVideoSampler(
            sampler=RandomSampler(train_dataset, generator=batch_sampler_generator), dataset=train_dataset.dataset, 
            batch_size=args.train_batch_size, train_folder = args.train_data_dir, drop_last=True,
            aspect_ratios=aspect_ratio_sample_size,
        )
        if args.keep_all_node_same_token_length:
            if args.token_sample_size > 256:
                numbers_list = list(range(256, args.token_sample_size + 1, 128))

                if numbers_list[-1] != args.token_sample_size:
                    numbers_list.append(args.token_sample_size)
            else:
                numbers_list = [256]
            numbers_list = [_number * _number * args.video_sample_n_frames for _number in  numbers_list]
        else:
            numbers_list = None

        def get_length_to_frame_num(token_length):
            if args.image_sample_size > args.video_sample_size:
                sample_sizes = list(range(256, args.image_sample_size + 1, 128))

                if sample_sizes[-1] != args.image_sample_size:
                    sample_sizes.append(args.image_sample_size)
            else:
                sample_sizes = [256]
            
            length_to_frame_num = {
                sample_size: min(token_length / sample_size / sample_size, args.video_sample_n_frames) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1 for sample_size in sample_sizes
            }

            return length_to_frame_num

        def collate_fn(examples):
            target_token_length = args.video_sample_n_frames * args.token_sample_size * args.token_sample_size
            length_to_frame_num = get_length_to_frame_num(
                target_token_length, 
            )

            # Create new output
            new_examples                 = {}
            new_examples["target_token_length"] = target_token_length
            new_examples["pixel_values"] = []
            new_examples["text"]         = []
            new_examples["control_pixel_values"] = []

            # Get ratio
            pixel_value     = examples[0]["pixel_values"]
            data_type       = examples[0]["data_type"]
            f, h, w, c      = np.shape(pixel_value)
            if data_type == 'image':
                random_downsample_ratio = 1 if not args.random_hw_adapt else get_random_downsample_ratio(args.image_sample_size, image_ratio=[args.image_sample_size / args.video_sample_size], rng=rng)

                aspect_ratio_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
                aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()}
                
                batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval
            else:
                if args.random_hw_adapt:
                    if args.training_with_video_token_length:
                        local_min_size = np.min(np.array([np.mean(np.array([np.shape(example["pixel_values"])[1], np.shape(example["pixel_values"])[2]])) for example in examples]))
                        choice_list = [length for length in list(length_to_frame_num.keys()) if length < local_min_size * 1.25]
                        if len(choice_list) == 0:
                            choice_list = list(length_to_frame_num.keys())
                        if rng is None:
                            local_video_sample_size = np.random.choice(choice_list)
                        else:
                            local_video_sample_size = rng.choice(choice_list)
                        batch_video_length = length_to_frame_num[local_video_sample_size]
                        random_downsample_ratio = args.video_sample_size / local_video_sample_size
                    else:
                        random_downsample_ratio = get_random_downsample_ratio(
                                args.video_sample_size, rng=rng)
                        batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval
                else:
                    random_downsample_ratio = 1
                    batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval

                aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
                aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()}

            closest_size, closest_ratio = get_closest_ratio(h, w, ratios=aspect_ratio_sample_size)
            closest_size = [int(x / 16) * 16 for x in closest_size]
            if args.random_ratio_crop:
                if rng is None:
                    random_sample_size = aspect_ratio_random_crop_sample_size[
                        np.random.choice(list(aspect_ratio_random_crop_sample_size.keys()), p = ASPECT_RATIO_RANDOM_CROP_PROB)
                    ]
                else:
                    random_sample_size = aspect_ratio_random_crop_sample_size[
                        rng.choice(list(aspect_ratio_random_crop_sample_size.keys()), p = ASPECT_RATIO_RANDOM_CROP_PROB)
                    ]
                random_sample_size = [int(x / 16) * 16 for x in random_sample_size]

            for example in examples:
                if args.random_ratio_crop:
                    pixel_values = torch.from_numpy(example["pixel_values"]).permute(0, 3, 1, 2).contiguous()
                    pixel_values = pixel_values / 255.

                    control_pixel_values = torch.from_numpy(example["control_pixel_values"]).permute(0, 3, 1, 2).contiguous()
                    control_pixel_values = control_pixel_values / 255.

                    # Get adapt hw for resize
                    b, c, h, w = pixel_values.size()
                    th, tw = random_sample_size
                    if th / tw > h / w:
                        nh = int(th)
                        nw = int(w / h * nh)
                    else:
                        nw = int(tw)
                        nh = int(h / w * nw)
                    
                    transform = transforms.Compose([
                        transforms.Resize([nh, nw]),
                        transforms.CenterCrop([int(x) for x in random_sample_size]),
                        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
                    ])
                else:
                    closest_size = list(map(lambda x: int(x), closest_size))
                    if closest_size[0] / h > closest_size[1] / w:
                        resize_size = closest_size[0], int(w * closest_size[0] / h)
                    else:
                        resize_size = int(h * closest_size[1] / w), closest_size[1]
                    
                    pixel_values = torch.from_numpy(example["pixel_values"]).permute(0, 3, 1, 2).contiguous()
                    pixel_values = pixel_values / 255.

                    control_pixel_values = torch.from_numpy(example["control_pixel_values"]).permute(0, 3, 1, 2).contiguous()
                    control_pixel_values = control_pixel_values / 255.

                    transform = transforms.Compose([
                        transforms.Resize(resize_size, interpolation=transforms.InterpolationMode.BILINEAR),  # Image.BICUBIC
                        transforms.CenterCrop(closest_size),
                        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
                    ])
                new_examples["pixel_values"].append(transform(pixel_values))
                new_examples["control_pixel_values"].append(transform(control_pixel_values))
                new_examples["text"].append(example["text"])
                batch_video_length = int(
                    min(
                        batch_video_length,
                        (len(pixel_values) - 1) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1, 
                    )
                )

                if batch_video_length == 0:
                    batch_video_length = 1

            new_examples["pixel_values"] = torch.stack([example[:batch_video_length] for example in new_examples["pixel_values"]])
            new_examples["control_pixel_values"] = torch.stack([example[:batch_video_length] for example in new_examples["control_pixel_values"]])

            if args.enable_text_encoder_in_dataloader:
                prompt_ids = tokenizer(
                    new_examples['text'], 
                    max_length=args.tokenizer_max_length, 
                    padding="max_length", 
                    add_special_tokens=True, 
                    truncation=True, 
                    return_tensors="pt"
                )
                encoder_hidden_states = text_encoder(
                    prompt_ids.input_ids,
                    return_dict=False
                )[0]
                new_examples['encoder_attention_mask'] = prompt_ids.attention_mask
                new_examples['encoder_hidden_states'] = encoder_hidden_states

            return new_examples
        
        # DataLoaders creation:
        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
            collate_fn=collate_fn,
            persistent_workers=True if args.dataloader_num_workers != 0 else False,
            num_workers=args.dataloader_num_workers,
        )
    else:
        # DataLoaders creation:
        batch_sampler_generator = torch.Generator().manual_seed(args.seed)
        batch_sampler = ImageVideoSampler(RandomSampler(train_dataset, generator=batch_sampler_generator), train_dataset, args.train_batch_size)
        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_sampler=batch_sampler, 
            persistent_workers=True if args.dataloader_num_workers != 0 else False,
            num_workers=args.dataloader_num_workers,
        )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
    )

    # Prepare everything with our `accelerator`.
    transformer3d, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        transformer3d, optimizer, train_dataloader, lr_scheduler
    )

    if args.use_ema:
        ema_transformer3d.to(accelerator.device)

    # Move text_encode and vae to gpu and cast to weight_dtype
    vae.to(accelerator.device, dtype=weight_dtype)
    if not args.enable_text_encoder_in_dataloader:
        text_encoder.to(accelerator.device)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_config = dict(vars(args))
        tracker_config.pop("validation_prompts")
        tracker_config.pop("validation_paths")
        tracker_config.pop("trainable_modules")
        tracker_config.pop("trainable_modules_low_learning_rate")
        accelerator.init_trackers(args.tracker_project_name, tracker_config)

    # Function for unwrapping if model was compiled with `torch.compile`.
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            global_step = int(path.split("-")[1])

            initial_global_step = global_step

            pkl_path = os.path.join(os.path.join(args.output_dir, path), "sampler_pos_start.pkl")
            if os.path.exists(pkl_path):
                with open(pkl_path, 'rb') as file:
                    _, first_epoch = pickle.load(file)
            else:
                first_epoch = global_step // num_update_steps_per_epoch
            print(f"Load pkl from {pkl_path}. Get first_epoch = {first_epoch}.")

            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    if args.multi_stream:
        # create extra cuda streams to speedup inpaint vae computation
        vae_stream_1 = torch.cuda.Stream()
        vae_stream_2 = torch.cuda.Stream()
    else:
        vae_stream_1 = None
        vae_stream_2 = None

    for epoch in range(first_epoch, args.num_train_epochs):
        train_loss = 0.0
        batch_sampler.sampler.generator = torch.Generator().manual_seed(args.seed + epoch)
        for step, batch in enumerate(train_dataloader):
            # Data batch sanity check
            if epoch == first_epoch and step == 0:
                pixel_values, texts = batch['pixel_values'].cpu(), batch['text']
                pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w")
                os.makedirs(os.path.join(args.output_dir, "sanity_check"), exist_ok=True)
                for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)):
                    pixel_value = pixel_value[None, ...]
                    gif_name = '-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{global_step}-{idx}'
                    save_videos_grid(pixel_value, f"{args.output_dir}/sanity_check/{gif_name[:10]}.gif", rescale=True)

            with accelerator.accumulate(transformer3d):
                # Convert images to latent space
                pixel_values = batch["pixel_values"].to(weight_dtype)
                control_pixel_values = batch["control_pixel_values"].to(weight_dtype)
                if args.training_with_video_token_length:
                    if args.video_sample_n_frames * args.token_sample_size * args.token_sample_size // 16 >= pixel_values.size()[1] * pixel_values.size()[3] * pixel_values.size()[4]:
                        pixel_values = torch.tile(pixel_values, (4, 1, 1, 1, 1))
                        control_pixel_values = torch.tile(control_pixel_values, (4, 1, 1, 1, 1))
                        if args.enable_text_encoder_in_dataloader:
                            batch['encoder_hidden_states'] = torch.tile(batch['encoder_hidden_states'], (4, 1, 1))
                            batch['encoder_attention_mask'] = torch.tile(batch['encoder_attention_mask'], (4, 1))
                        else:
                            batch['text'] = batch['text'] * 4
                    elif args.video_sample_n_frames * args.token_sample_size * args.token_sample_size // 4 >= pixel_values.size()[1] * pixel_values.size()[3] * pixel_values.size()[4]:
                        pixel_values = torch.tile(pixel_values, (2, 1, 1, 1, 1))
                        control_pixel_values = torch.tile(control_pixel_values, (2, 1, 1, 1, 1))
                        if args.enable_text_encoder_in_dataloader:
                            batch['encoder_hidden_states'] = torch.tile(batch['encoder_hidden_states'], (2, 1, 1))
                            batch['encoder_attention_mask'] = torch.tile(batch['encoder_attention_mask'], (2, 1))
                        else:
                            batch['text'] = batch['text'] * 2

                def create_special_list(length):
                    if length == 1:
                        return [1.0]
                    if length >= 2:
                        last_element = 0.90
                        remaining_sum = 1.0 - last_element
                        other_elements_value = remaining_sum / (length - 1)
                        special_list = [other_elements_value] * (length - 1) + [last_element]
                        return special_list
                    
                if args.keep_all_node_same_token_length:
                    actual_token_length = index_rng.choice(numbers_list)

                    actual_video_length = (min(
                            actual_token_length / pixel_values.size()[-1] / pixel_values.size()[-2], args.video_sample_n_frames
                    ) - 1) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1
                    actual_video_length = int(max(actual_video_length, 1))
                else:
                    actual_video_length = None

                if args.random_frame_crop:
                    select_frames = [_tmp for _tmp in list(range(sample_n_frames_bucket_interval + 1, args.video_sample_n_frames + sample_n_frames_bucket_interval, sample_n_frames_bucket_interval))]
                    select_frames_prob = np.array(create_special_list(len(select_frames)))
                    
                    if rng is None:
                        temp_n_frames = np.random.choice(select_frames, p = select_frames_prob)
                    else:
                        temp_n_frames = rng.choice(select_frames, p = select_frames_prob)
                    if args.keep_all_node_same_token_length:
                        temp_n_frames = min(actual_video_length, temp_n_frames)

                    pixel_values = pixel_values[:, :temp_n_frames, :, :]
                    control_pixel_values = control_pixel_values[:, :temp_n_frames, :, :]

                if args.low_vram:
                    torch.cuda.empty_cache()
                    vae.to(accelerator.device)
                    if not args.enable_text_encoder_in_dataloader:
                        text_encoder.to(accelerator.device)

                with torch.no_grad():
                    # This way is quicker when batch grows up
                    def _slice_vae(pixel_values):
                        pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w")
                        bs = args.vae_mini_batch
                        new_pixel_values = []
                        for i in range(0, pixel_values.shape[0], bs):
                            pixel_values_bs = pixel_values[i : i + bs]
                            pixel_values_bs = vae.encode(pixel_values_bs)[0]
                            pixel_values_bs = pixel_values_bs.sample()
                            new_pixel_values.append(pixel_values_bs)
                            vae._clear_fake_context_parallel_cache()
                        return torch.cat(new_pixel_values, dim = 0)
                    if vae_stream_1 is not None:
                        vae_stream_1.wait_stream(torch.cuda.current_stream())
                        with torch.cuda.stream(vae_stream_1):
                            latents = _slice_vae(pixel_values)
                    else:
                        latents = _slice_vae(pixel_values)
                    latents = latents * vae.config.scaling_factor
                        
                    control_latents = _slice_vae(control_pixel_values)
                    control_latents = control_latents * vae.config.scaling_factor
                    control_latents = rearrange(control_latents, "b c f h w -> b f c h w")

                    latents = rearrange(latents, "b c f h w -> b f c h w")
                        
                # wait for latents = vae.encode(pixel_values) to complete
                if vae_stream_1 is not None:
                    torch.cuda.current_stream().wait_stream(vae_stream_1)

                if args.low_vram:
                    vae.to('cpu')
                    torch.cuda.empty_cache()
                    if not args.enable_text_encoder_in_dataloader:
                        text_encoder.to(accelerator.device)

                if args.enable_text_encoder_in_dataloader:
                    prompt_embeds = batch['encoder_hidden_states'].to(device=latents.device)
                else:
                    with torch.no_grad():
                        prompt_ids = tokenizer(
                            batch['text'], 
                            max_length=args.tokenizer_max_length, 
                            padding="max_length", 
                            add_special_tokens=True, 
                            truncation=True, 
                            return_tensors="pt"
                        )
                        prompt_embeds = text_encoder(
                            prompt_ids.input_ids.to(latents.device),
                            return_dict=False
                        )[0]

                if args.low_vram and not args.enable_text_encoder_in_dataloader:
                    text_encoder.to('cpu')
                    torch.cuda.empty_cache()

                bsz = latents.shape[0]
                noise = torch.randn(latents.size(), device=latents.device, generator=torch_rng, dtype=weight_dtype)
                # Sample a random timestep for each image
                # timesteps = generate_timestep_with_lognorm(0, args.train_sampling_steps, (bsz,), device=latents.device, generator=torch_rng)
                timesteps = torch.randint(0, args.train_sampling_steps, (bsz,), device=latents.device, generator=torch_rng)
                timesteps = timesteps.long()

                # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
                def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
                    tw = tgt_width
                    th = tgt_height
                    h, w = src
                    r = h / w
                    if r > (th / tw):
                        resize_height = th
                        resize_width = int(round(th / h * w))
                    else:
                        resize_width = tw
                        resize_height = int(round(tw / w * h))

                    crop_top = int(round((th - resize_height) / 2.0))
                    crop_left = int(round((tw - resize_width) / 2.0))

                    return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)

                def _prepare_rotary_positional_embeddings(
                    height: int,
                    width: int,
                    num_frames: int,
                    device: torch.device
                ):
                    vae_scale_factor_spatial = (
                        2 ** (len(vae.config.block_out_channels) - 1) if vae is not None else 8
                    )
                    grid_height = height // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size)
                    grid_width = width // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size)
                    base_size_width = 720 // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size)
                    base_size_height = 480 // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size)

                    grid_crops_coords = get_resize_crop_region_for_grid(
                        (grid_height, grid_width), base_size_width, base_size_height
                    )
                    freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
                        embed_dim=unwrap_model(transformer3d).config.attention_head_dim,
                        crops_coords=grid_crops_coords,
                        grid_size=(grid_height, grid_width),
                        temporal_size=num_frames,
                        use_real=True,
                    )
                    freqs_cos = freqs_cos.to(device=device)
                    freqs_sin = freqs_sin.to(device=device)
                    return freqs_cos, freqs_sin

                height, width = batch["pixel_values"].size()[-2], batch["pixel_values"].size()[-1]
                # 7. Create rotary embeds if required
                image_rotary_emb = (
                    _prepare_rotary_positional_embeddings(height, width, latents.size(1), latents.device)
                    if unwrap_model(transformer3d).config.use_rotary_positional_embeddings
                    else None
                )
                prompt_embeds = prompt_embeds.to(device=latents.device)

                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                # predict the noise residual
                noise_pred = transformer3d(
                    hidden_states=noisy_latents,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timesteps,
                    image_rotary_emb=image_rotary_emb,
                    return_dict=False,
                    control_latents=control_latents,
                )[0]
                print(noise_pred.size(), noisy_latents.size(), latents.size(), pixel_values.size())
                loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")

                if args.motion_sub_loss and noise_pred.size()[1] > 2:
                    gt_sub_noise = noise_pred[:, 1:, :].float() - noise_pred[:, :-1, :].float()
                    pre_sub_noise = target[:, 1:, :].float() - target[:, :-1, :].float()
                    sub_loss = F.mse_loss(gt_sub_noise, pre_sub_noise, reduction="mean")
                    loss = loss * (1 - args.motion_sub_loss_ratio) + sub_loss * args.motion_sub_loss_ratio

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    if not args.use_deepspeed:
                        trainable_params_grads = [p.grad for p in trainable_params if p.grad is not None]
                        trainable_params_total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2) for g in trainable_params_grads]), 2)
                        max_grad_norm = linear_decay(args.max_grad_norm * args.initial_grad_norm_ratio, args.max_grad_norm, args.abnormal_norm_clip_start, global_step)
                        if trainable_params_total_norm / max_grad_norm > 5 and global_step > args.abnormal_norm_clip_start:
                            actual_max_grad_norm = max_grad_norm / min((trainable_params_total_norm / max_grad_norm), 10)
                        else:
                            actual_max_grad_norm = max_grad_norm
                    else:
                        actual_max_grad_norm = args.max_grad_norm

                    if not args.use_deepspeed and args.report_model_info and accelerator.is_main_process:
                        if trainable_params_total_norm > 1 and global_step > args.abnormal_norm_clip_start:
                            for name, param in transformer3d.named_parameters():
                                if param.requires_grad:
                                    writer.add_scalar(f'gradients/before_clip_norm/{name}', param.grad.norm(), global_step=global_step)

                    norm_sum = accelerator.clip_grad_norm_(trainable_params, actual_max_grad_norm)
                    if not args.use_deepspeed and args.report_model_info and accelerator.is_main_process:
                        writer.add_scalar(f'gradients/norm_sum', norm_sum, global_step=global_step)
                        writer.add_scalar(f'gradients/actual_max_grad_norm', actual_max_grad_norm, global_step=global_step)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:

                if args.use_ema:
                    ema_transformer3d.step(transformer3d.parameters())
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if global_step % args.checkpointing_steps == 0:
                    if args.use_deepspeed or accelerator.is_main_process:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                if accelerator.is_main_process:
                    if args.validation_prompts is not None and global_step % args.validation_steps == 0:
                        if args.use_ema:
                            # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                            ema_transformer3d.store(transformer3d.parameters())
                            ema_transformer3d.copy_to(transformer3d.parameters())
                        log_validation(
                            vae,
                            text_encoder,
                            tokenizer,
                            transformer3d,
                            args,
                            accelerator,
                            weight_dtype,
                            global_step,
                        )
                        if args.use_ema:
                            # Switch back to the original transformer3d parameters.
                            ema_transformer3d.restore(transformer3d.parameters())

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            if args.validation_prompts is not None and epoch % args.validation_epochs == 0:
                if args.use_ema:
                    # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                    ema_transformer3d.store(transformer3d.parameters())
                    ema_transformer3d.copy_to(transformer3d.parameters())
                log_validation(
                    vae,
                    text_encoder,
                    tokenizer,
                    transformer3d,
                    args,
                    accelerator,
                    weight_dtype,
                    global_step,
                )
                if args.use_ema:
                    # Switch back to the original transformer3d parameters.
                    ema_transformer3d.restore(transformer3d.parameters())

    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        transformer3d = unwrap_model(transformer3d)
        if args.use_ema:
            ema_transformer3d.copy_to(transformer3d.parameters())

        if args.use_deepspeed or accelerator.is_main_process:
            save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
            accelerator.save_state(save_path)
            logger.info(f"Saved state to {save_path}")

    accelerator.end_training()


if __name__ == "__main__":
    main()