import json import os import numpy as np import torch from diffusers import (AutoencoderKL, CogVideoXDDIMScheduler, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, PNDMScheduler) from transformers import T5EncoderModel, T5Tokenizer from omegaconf import OmegaConf from PIL import Image from cogvideox.models.transformer3d import CogVideoXTransformer3DModel from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline from cogvideox.pipeline.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint from cogvideox.utils.lora_utils import merge_lora, unmerge_lora from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid, ASPECT_RATIO_512, get_closest_ratio, to_pil from huggingface_hub import HfApi, HfFolder # Low GPU memory mode low_gpu_memory_mode = False # Model loading section model_id = "/content/model" transformer = CogVideoXTransformer3DModel.from_pretrained_2d( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 ).to(torch.bfloat16) vae = AutoencoderKLCogVideoX.from_pretrained( model_id, subfolder="vae" ).to(torch.bfloat16) text_encoder = T5EncoderModel.from_pretrained( model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16 ) sampler_dict = { "Euler": EulerDiscreteScheduler, "Euler A": EulerAncestralDiscreteScheduler, "DPM++": DPMSolverMultistepScheduler, "PNDM": PNDMScheduler, "DDIM_Cog": CogVideoXDDIMScheduler, "DDIM_Origin": DDIMScheduler, } scheduler = sampler_dict["DPM++"].from_pretrained(model_id, subfolder="scheduler") # Pipeline setup if transformer.config.in_channels != vae.config.latent_channels: pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained( model_id, vae=vae, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, torch_dtype=torch.bfloat16 ) else: pipeline = CogVideoX_Fun_Pipeline.from_pretrained( model_id, vae=vae, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, torch_dtype=torch.bfloat16 ) if low_gpu_memory_mode: pipeline.enable_sequential_cpu_offload() else: pipeline.enable_model_cpu_offload() @torch.inference_mode() def generate(input): values = input["input"] prompt = values["prompt"] negative_prompt = values.get("negative_prompt", "") guidance_scale = values.get("guidance_scale", 6.0) seed = values.get("seed", 42) num_inference_steps = values.get("num_inference_steps", 50) base_resolution = values.get("base_resolution", 512) video_length = values.get("video_length", 53) fps = values.get("fps", 10) lora_weight = values.get("lora_weight", 1.00) save_path = "samples" partial_video_length = values.get("partial_video_length", None) overlap_video_length = values.get("overlap_video_length", 4) validation_image_start = values.get("validation_image_start", "asset/1.png") validation_image_end = values.get("validation_image_end", None) generator = torch.Generator(device="cuda").manual_seed(seed) aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} start_img = Image.open(validation_image_start) original_width, original_height = start_img.size closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size) height, width = [int(x / 16) * 16 for x in closest_size] sample_size = [height, width] if partial_video_length is not None: # Handle ultra-long video generation if required # ... (existing logic for partial video generation) else: # Standard video generation video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1 input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image_start, validation_image_end, video_length=video_length, sample_size=sample_size) with torch.no_grad(): sample = pipeline( prompt=prompt, num_frames=video_length, negative_prompt=negative_prompt, height=sample_size[0], width=sample_size[1], generator=generator, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, video=input_video, mask_video=input_video_mask ).videos if not os.path.exists(save_path): os.makedirs(save_path, exist_ok=True) index = len([path for path in os.listdir(save_path)]) + 1 prefix = str(index).zfill(8) video_path = os.path.join(save_path, f"{prefix}.mp4") save_videos_grid(sample, video_path, fps=fps) # Upload final video to Hugging Face repository #hf_api = HfApi() #repo_id = values.get("repo_id", "your-username/your-repo") # Set your HF repo #hf_api.upload_file( # path_or_fileobj=video_path, # path_in_repo=f"{prefix}.mp4", # repo_id=repo_id, # repo_type="model" # or "dataset" if using a dataset repo #) # Prepare output #result_url = f"https://huggingface.co/{repo_id}/blob/main/{prefix}.mp4" result_url = "" job_id = values.get("job_id", "default-job-id") # For RunPod job tracking return {"jobId": job_id, "result": result_url, "status": "DONE"} runpod.serverless.start({"handler": generate})