File size: 1,168 Bytes
2a5f9fb
df66f6e
2a5f9fb
 
ffe4d51
7dd405e
ffe4d51
 
 
 
 
08ae6c5
ffe4d51
 
 
 
 
 
2a5f9fb
ffe4d51
aa84d16
ffe4d51
 
 
9833cdb
2a5f9fb
ffe4d51
 
9833cdb
ffe4d51
395eff6
1ffc326
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os

from huggingface_hub import HfApi

# Org/username where things are read/written
OWNER = "meg"
# Read/write token
TOKEN = os.environ.get("HF_TOKEN")
API = HfApi(token=TOKEN)
# Key for Perspective API
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")

# Number of lines to read in the eval file, or None for all.
EVAL_CUTOFF = 120 # !!!! For testing, should be None for actual evaluations!!!
# How often to try to run eval.
REFRESH_RATE = 5 * 60  # 5 min
# How many lines to display in the log visualizer
NUM_LINES_VISUALIZE = 300

# Where results are displayed
REPO_ID = f"{OWNER}/leaderboard"
# Dataset directory where the requests are created
REQUESTS_REPO = f"{OWNER}/requests"
# Dataset directory where the results are written to
RESULTS_REPO = f"{OWNER}/results"

# If you set up a cache later, set HF_HOME to where it is
CACHE_PATH = os.getenv("HF_HOME", ".")
# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-requests")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")