File size: 7,395 Bytes
85d3b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import sys
import numpy as np
import pyworld
import torchcrepe
import torch
import parselmouth
import tqdm
from multiprocessing import Process, cpu_count

current_directory = os.getcwd()
sys.path.append(current_directory)


from rvc.lib.utils import load_audio


exp_dir = sys.argv[1]
f0_method = sys.argv[2]
num_processes = cpu_count()

try:
    hop_length = int(sys.argv[3])
except ValueError:
    hop_length = 128

DoFormant = False
Quefrency = 1.0
Timbre = 1.0


class FeatureInput:
    def __init__(self, sample_rate=16000, hop_size=160):
        self.fs = sample_rate
        self.hop = hop_size

        self.f0_method_dict = self.get_f0_method_dict()

        self.f0_bin = 256
        self.f0_max = 1100.0
        self.f0_min = 50.0
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)

    def mncrepe(self, method, x, p_len, hop_length):
        f0 = None
        torch_device_index = 0
        torch_device = (
            torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
            if torch.cuda.is_available()
            else torch.device("mps")
            if torch.backends.mps.is_available()
            else torch.device("cpu")
        )

        audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True)
        audio /= torch.quantile(torch.abs(audio), 0.999)
        audio = torch.unsqueeze(audio, dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True).detach()
        audio = audio.detach()

        if method == "crepe":
            pitch = torchcrepe.predict(
                audio,
                self.fs,
                hop_length,
                self.f0_min,
                self.f0_max,
                "full",
                batch_size=hop_length * 2,
                device=torch_device,
                pad=True,
            )
            p_len = p_len or x.shape[0] // hop_length
            source = np.array(pitch.squeeze(0).cpu().float().numpy())
            source[source < 0.001] = np.nan
            target = np.interp(
                np.arange(0, len(source) * p_len, len(source)) / p_len,
                np.arange(0, len(source)),
                source,
            )
            f0 = np.nan_to_num(target)

        return f0

    def get_pm(self, x, p_len):
        f0 = (
            parselmouth.Sound(x, self.fs)
            .to_pitch_ac(
                time_step=160 / 16000,
                voicing_threshold=0.6,
                pitch_floor=self.f0_min,
                pitch_ceiling=self.f0_max,
            )
            .selected_array["frequency"]
        )

        return np.pad(
            f0,
            [
                [
                    max(0, (p_len - len(f0) + 1) // 2),
                    max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2),
                ]
            ],
            mode="constant",
        )

    def get_harvest(self, x):
        f0_spectral = pyworld.harvest(
            x.astype(np.double),
            fs=self.fs,
            f0_ceil=self.f0_max,
            f0_floor=self.f0_min,
            frame_period=1000 * self.hop / self.fs,
        )
        return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)

    def get_dio(self, x):
        f0_spectral = pyworld.dio(
            x.astype(np.double),
            fs=self.fs,
            f0_ceil=self.f0_max,
            f0_floor=self.f0_min,
            frame_period=1000 * self.hop / self.fs,
        )
        return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)

    def get_rmvpe(self, x):
        if not hasattr(self, "model_rmvpe"):
            from rvc.lib.rmvpe import RMVPE

            self.model_rmvpe = RMVPE("rmvpe.pt", is_half=False, device="cpu")
        return self.model_rmvpe.infer_from_audio(x, thred=0.03)

    def get_f0_method_dict(self):
        return {
            "pm": self.get_pm,
            "harvest": self.get_harvest,
            "dio": self.get_dio,
            "rmvpe": self.get_rmvpe,
        }

    def compute_f0(self, path, f0_method, hop_length):
        x = load_audio(path, self.fs)
        p_len = x.shape[0] // self.hop

        if f0_method in self.f0_method_dict:
            f0 = (
                self.f0_method_dict[f0_method](x, p_len)
                if f0_method == "pm"
                else self.f0_method_dict[f0_method](x)
            )
        elif f0_method == "crepe":
            f0 = self.mncrepe(f0_method, x, p_len, hop_length)
        return f0

    def coarse_f0(self, f0):
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
            self.f0_bin - 2
        ) / (self.f0_mel_max - self.f0_mel_min) + 1

        # use 0 or 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
        f0_coarse = np.rint(f0_mel).astype(int)
        assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
            f0_coarse.max(),
            f0_coarse.min(),
        )
        return f0_coarse

    def process_paths(self, paths, f0_method, hop_length, thread_n):
        if len(paths) == 0:
            print("There are no paths to process.")
            return
        with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
            description = f"Thread {thread_n} | Hop-Length {hop_length}"
            pbar.set_description(description)

            for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
                try:
                    if os.path.exists(opt_path1 + ".npy") and os.path.exists(
                        opt_path2 + ".npy"
                    ):
                        pbar.update(1)
                        continue

                    feature_pit = self.compute_f0(inp_path, f0_method, hop_length)
                    np.save(
                        opt_path2,
                        feature_pit,
                        allow_pickle=False,
                    )  # nsf
                    coarse_pit = self.coarse_f0(feature_pit)
                    np.save(
                        opt_path1,
                        coarse_pit,
                        allow_pickle=False,
                    )  # ori
                    pbar.update(1)
                except Exception as error:
                    print(f"f0fail-{idx}-{inp_path}-{error}")


if __name__ == "__main__":
    feature_input = FeatureInput()
    paths = []
    input_root = f"{exp_dir}/1_16k_wavs"
    output_root1 = f"{exp_dir}/2a_f0"
    output_root2 = f"{exp_dir}/2b-f0nsf"

    os.makedirs(output_root1, exist_ok=True)
    os.makedirs(output_root2, exist_ok=True)
    for name in sorted(list(os.listdir(input_root))):
        input_path = f"{input_root}/{name}"
        if "spec" in input_path:
            continue
        output_path1 = f"{output_root1}/{name}"
        output_path2 = f"{output_root2}/{name}"
        paths.append([input_path, output_path1, output_path2])

    processes = []
    print("Using f0 method: " + f0_method)
    for i in range(num_processes):
        p = Process(
            target=feature_input.process_paths,
            args=(paths[i::num_processes], f0_method, hop_length, i),
        )
        processes.append(p)
        p.start()
    for i in range(num_processes):
        processes[i].join()