File size: 5,076 Bytes
85d3b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889c346
85d3b29
 
 
 
 
 
 
889c346
 
85d3b29
 
 
 
 
 
 
 
 
 
 
 
 
 
889c346
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
import sys
import json
from multiprocessing import cpu_count

import torch

version_config_list = [
    "v1/32000.json",
    "v1/40000.json",
    "v1/48000.json",
    "v2/48000.json",
    "v2/32000.json",
]


def singleton_variable(func):
    def wrapper(*args, **kwargs):
        if not wrapper.instance:
            wrapper.instance = func(*args, **kwargs)
        return wrapper.instance

    wrapper.instance = None
    return wrapper


@singleton_variable
class Config:
    def __init__(self):
        self.device = "cuda:0"
        self.is_half = True
        self.use_jit = False
        self.n_cpu = 0
        self.gpu_name = None
        self.json_config = self.load_config_json()
        self.gpu_mem = None
        self.instead = ""
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    @staticmethod
    def load_config_json() -> dict:
        d = {}
        for config_file in version_config_list:
            with open(f"rvc/configs/{config_file}", "r") as f:
                d[config_file] = json.load(f)
        return d

    @staticmethod
    def has_mps() -> bool:
        if not torch.backends.mps.is_available():
            return False
        try:
            torch.zeros(1).to(torch.device("mps"))
            return True
        except Exception:
            return False

    @staticmethod
    def has_xpu() -> bool:
        if hasattr(torch, "xpu") and torch.xpu.is_available():
            return True
        else:
            return False

    def use_fp32_config(self):
        for config_file in version_config_list:
            self.json_config[config_file]["train"]["fp16_run"] = False
            with open(f"rvc/configs/{config_file}", "r") as f:
                strr = f.read().replace("true", "false")
            with open(f"rvc/configs/{config_file}", "w") as f:
                f.write(strr)
        with open("rvc/train/preprocess/preprocess.py", "r") as f:
            strr = f.read().replace("3.7", "3.0")
        with open("rvc/train/preprocess/preprocess.py", "w") as f:
            f.write(strr)

    def device_config(self) -> tuple:
        if torch.cuda.is_available():
            if self.has_xpu():
                self.device = self.instead = "xpu:0"
                self.is_half = True
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            if (
                ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
                or "P40" in self.gpu_name.upper()
                or "P10" in self.gpu_name.upper()
                or "1060" in self.gpu_name
                or "1070" in self.gpu_name
                or "1080" in self.gpu_name
            ):
                self.is_half = False
                self.use_fp32_config()
            self.gpu_mem = int(
                torch.cuda.get_device_properties(i_device).total_memory
                / 1024
                / 1024
                / 1024
                + 0.4
            )
            if self.gpu_mem <= 4:
                with open("rvc/train/preprocess/preprocess.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("rvc/train/preprocess/preprocess.py", "w") as f:
                    f.write(strr)
        elif self.has_mps():
            print("No supported Nvidia GPU found")
            self.device = self.instead = "mps"
            self.is_half = False
            self.use_fp32_config()
        else:
            print("No supported Nvidia GPU found")
            self.device = self.instead = "cpu"
            self.is_half = False
            self.use_fp32_config()

        if self.n_cpu == 0:
            self.n_cpu = cpu_count()

        if self.is_half:
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem is not None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32

        return x_pad, x_query, x_center, x_max


def max_vram_gpu(gpu):
    if torch.cuda.is_available():
        gpu_properties = torch.cuda.get_device_properties(gpu)
        total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024)
        return total_memory_gb
    else:
        return "0"


def get_gpu_info():
    ngpu = torch.cuda.device_count()
    gpu_infos = []
    if torch.cuda.is_available() or ngpu != 0:
        for i in range(ngpu):
            gpu_name = torch.cuda.get_device_name(i)
            mem = int(
                torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024
                + 0.4
            )
            gpu_infos.append("%s: %s %s GB" % (i, gpu_name, mem))
    if len(gpu_infos) > 0:
        gpu_info = "\n".join(gpu_infos)
    else:
        gpu_info = "Unfortunately, there is no compatible GPU available to support your training."
    return gpu_info