|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import librosa.display |
|
import librosa |
|
|
|
|
|
def calculate_features(y, sr): |
|
stft = np.abs(librosa.stft(y)) |
|
duration = librosa.get_duration(y=y, sr=sr) |
|
cent = librosa.feature.spectral_centroid(S=stft, sr=sr)[0] |
|
bw = librosa.feature.spectral_bandwidth(S=stft, sr=sr)[0] |
|
rolloff = librosa.feature.spectral_rolloff(S=stft, sr=sr)[0] |
|
return stft, duration, cent, bw, rolloff |
|
|
|
|
|
def plot_title(title): |
|
plt.suptitle(title, fontsize=16, fontweight="bold") |
|
|
|
|
|
def plot_spectrogram(y, sr, stft, duration, cmap="inferno"): |
|
plt.subplot(3, 1, 1) |
|
plt.imshow( |
|
librosa.amplitude_to_db(stft, ref=np.max), |
|
origin="lower", |
|
extent=[0, duration, 0, sr / 1000], |
|
aspect="auto", |
|
cmap=cmap, |
|
) |
|
plt.colorbar(format="%+2.0f dB") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Frequency (kHz)") |
|
plt.title("Spectrogram") |
|
|
|
|
|
def plot_waveform(y, sr, duration): |
|
plt.subplot(3, 1, 2) |
|
librosa.display.waveshow(y, sr=sr) |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.title("Waveform") |
|
|
|
|
|
def plot_features(times, cent, bw, rolloff, duration): |
|
plt.subplot(3, 1, 3) |
|
plt.plot(times, cent, label="Spectral Centroid (kHz)", color="b") |
|
plt.plot(times, bw, label="Spectral Bandwidth (kHz)", color="g") |
|
plt.plot(times, rolloff, label="Spectral Rolloff (kHz)", color="r") |
|
plt.xlabel("Time (s)") |
|
plt.title("Spectral Features") |
|
plt.legend() |
|
|
|
|
|
def analyze_audio(audio_file, save_plot_path="logs/audio_analysis.png"): |
|
y, sr = librosa.load(audio_file) |
|
stft, duration, cent, bw, rolloff = calculate_features(y, sr) |
|
|
|
plt.figure(figsize=(12, 10)) |
|
|
|
plot_title("Audio Analysis" + " - " + audio_file.split("/")[-1]) |
|
plot_spectrogram(y, sr, stft, duration) |
|
plot_waveform(y, sr, duration) |
|
plot_features(librosa.times_like(cent), cent, bw, rolloff, duration) |
|
|
|
plt.tight_layout() |
|
|
|
if save_plot_path: |
|
plt.savefig(save_plot_path, bbox_inches="tight", dpi=300) |
|
plt.close() |
|
|
|
audio_info = f"""Sample Rate: {sr}\nDuration: {( |
|
str(round(duration, 2)) + " seconds" |
|
if duration < 60 |
|
else str(round(duration / 60, 2)) + " minutes" |
|
)}\nNumber of Samples: {len(y)}\nBits per Sample: {librosa.get_samplerate(audio_file)}\nChannels: {"Mono (1)" if y.ndim == 1 else "Stereo (2)"}""" |
|
|
|
return audio_info, save_plot_path |
|
|