Spaces:
Running
Running
import streamlit as st | |
from streamlit_extras.switch_page_button import switch_page | |
st.title("PLLaVA") | |
st.success("""[Original tweet](https://twitter.com/mervenoyann/status/1786336055425138939) (May 3, 2024)""", icon="ℹ️") | |
st.markdown(""" """) | |
st.markdown("""Parameter-free LLaVA for video captioning works like magic! 🤩 Let's take a look! | |
""") | |
st.markdown(""" """) | |
st.image("pages/PLLaVA/image_1.jpg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown("""Most of the video captioning models work by downsampling video frames to reduce computational complexity and memory requirements without losing a lot of information in the process. | |
PLLaVA on the other hand, uses pooling! 🤩 | |
How? 🧐 | |
It takes in frames of video, passed to ViT and then projection layer, and then output goes through average pooling where input shape is (# frames, width, height, text decoder input dim) 👇 | |
""") | |
st.markdown(""" """) | |
st.image("pages/PLLaVA/image_2.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown("""Pooling operation surprisingly reduces the loss of spatial and temporal information. See below some examples on how it can capture the details 🤗 | |
""") | |
st.markdown(""" """) | |
st.image("pages/PLLaVA/image_3.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown("""According to authors' findings, it performs way better than many of the existing models (including proprietary VLMs) and scales very well (on text decoder). | |
""") | |
st.markdown(""" """) | |
st.image("pages/PLLaVA/image_4.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown(""" | |
Model repositories 🤗 [7B](https://t.co/AeSdYsz1U7), [13B](https://t.co/GnI1niTxO7), [34B](https://t.co/HWAM0ZzvDc) | |
Spaces🤗 [7B](https://t.co/Oms2OLkf7O), [13B](https://t.co/C2RNVNA4uR) | |
""") | |
st.markdown(""" """) | |
st.info(""" | |
Ressources: | |
[PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning](https://arxiv.org/abs/2404.16994) | |
by Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, Jiashi Feng (2024) | |
[GitHub](https://github.com/magic-research/PLLaVA)""", icon="📚") | |
st.markdown(""" """) | |
st.markdown(""" """) | |
st.markdown(""" """) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
if st.button('Previous paper', use_container_width=True): | |
switch_page("DocOwl 1.5") | |
with col2: | |
if st.button('Home', use_container_width=True): | |
switch_page("Home") | |
with col3: | |
if st.button('Next paper', use_container_width=True): | |
switch_page("CuMo") |