vision_papers / pages /16_PLLaVA.py
merve's picture
merve HF staff
Multilingual version (#1)
1d4f55a verified
raw
history blame
6.23 kB
import streamlit as st
from streamlit_extras.switch_page_button import switch_page
translations = {
'en': {'title': 'PLLaVA',
'original_tweet':
"""
[Original tweet](https://twitter.com/mervenoyann/status/1786336055425138939) (May 3, 2024)
""",
'tweet_1':
"""
Parameter-free LLaVA for video captioning works like magic! 🤩 Let's take a look!
""",
'tweet_2':
"""
Most of the video captioning models work by downsampling video frames to reduce computational complexity and memory requirements without losing a lot of information in the process.
PLLaVA on the other hand, uses pooling! 🤩
<br>
How? 🧐
It takes in frames of video, passed to ViT and then projection layer, and then output goes through average pooling where input shape is (# frames, width, height, text decoder input dim) 👇
""",
'tweet_3':
"""
Pooling operation surprisingly reduces the loss of spatial and temporal information. See below some examples on how it can capture the details 🤗
""",
'tweet_4':
"""
According to authors' findings, it performs way better than many of the existing models (including proprietary VLMs) and scales very well (on text decoder).
""",
'tweet_5':
"""
Model repositories 🤗 [7B](https://t.co/AeSdYsz1U7), [13B](https://t.co/GnI1niTxO7), [34B](https://t.co/HWAM0ZzvDc)
Spaces🤗 [7B](https://t.co/Oms2OLkf7O), [13B](https://t.co/C2RNVNA4uR)
""",
'ressources':
"""
Ressources:
[PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning](https://arxiv.org/abs/2404.16994)
by Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, Jiashi Feng (2024)
[GitHub](https://github.com/magic-research/PLLaVA)
"""
},
'fr': {
'title': 'PLLaVA',
'original_tweet':
"""
[Tweet de base](https://twitter.com/mervenoyann/status/1786336055425138939) (en anglais) (3 mai 2024)
""",
'tweet_1':
"""
Parameter-free LLaVA (PLLaVA) pour le sous-titrage vidéo fonctionne comme par magie ! 🤩
Jetons un coup d'œil !
""",
'tweet_2':
"""
La plupart des modèles de sous-titrage vidéo fonctionnent par sous-échantillonnage des images vidéo afin de réduire la complexité de calcul et les besoins en mémoire sans perdre beaucoup d'informations au cours du processus.
PLLaVA, quant à lui, utilise le pooling ! 🤩
<br>
Comment ?
Il prend les images de la vidéo, les passe au ViT puis à la couche de projection, et la sortie passe par un average pooling où la forme d'entrée est (# images, largeur, hauteur, dim d'entrée du décodeur de texte) 👇 """,
'tweet_3':
"""
L'opération de pooling réduit de manière surprenante la perte d'informations spatiales et temporelles. Voir ci-dessous quelques exemples de la façon dont elle peut capturer les détails 🤗 """,
'tweet_4':
"""
Selon les conclusions des auteurs, il est bien plus performant que de nombreux modèles existants (y compris les VLM propriétaires) et passe à l'échelle très bien (sur le décodeur de texte). """,
'tweet_5':
"""
Dépôts des modèles 🤗 [7 Mds](https://t.co/AeSdYsz1U7), [13 Mds](https://t.co/GnI1niTxO7), [34 Mds](https://t.co/HWAM0ZzvDc)
Spaces🤗 [7 Mds](https://t.co/Oms2OLkf7O), [13 Mds](https://t.co/C2RNVNA4uR)
""",
'ressources':
"""
Ressources :
[PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning](https://arxiv.org/abs/2404.16994)
de Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, Jiashi Feng (2024)
[GitHub](https://github.com/magic-research/PLLaVA)
"""
}
}
def language_selector():
languages = {'EN': '🇬🇧', 'FR': '🇫🇷'}
selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector')
return 'en' if selected_lang == 'EN' else 'fr'
left_column, right_column = st.columns([5, 1])
# Add a selector to the right column
with right_column:
lang = language_selector()
# Add a title to the left column
with left_column:
st.title(translations[lang]["title"])
st.success(translations[lang]["original_tweet"], icon="ℹ️")
st.markdown(""" """)
st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/PLLaVA/image_1.jpg", use_column_width=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/PLLaVA/image_2.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/PLLaVA/image_3.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/PLLaVA/image_4.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_5"], unsafe_allow_html=True)
st.markdown(""" """)
st.info(translations[lang]["ressources"], icon="📚")
st.markdown(""" """)
st.markdown(""" """)
st.markdown(""" """)
col1, col2, col3= st.columns(3)
with col1:
if lang == "en":
if st.button('Previous paper', use_container_width=True):
switch_page("MiniGemini")
else:
if st.button('Papier précédent', use_container_width=True):
switch_page("MiniGemini")
with col2:
if lang == "en":
if st.button("Home", use_container_width=True):
switch_page("Home")
else:
if st.button("Accueil", use_container_width=True):
switch_page("Home")
with col3:
if lang == "en":
if st.button("Next paper", use_container_width=True):
switch_page("CuMo")
else:
if st.button("Papier suivant", use_container_width=True):
switch_page("CuMo")