import streamlit as st from streamlit_extras.switch_page_button import switch_page translations = { 'en': {'title': 'MiniGemini', 'original_tweet': """ [Original tweet](https://x.com/mervenoyann/status/1783864388249694520) (April 26, 2024) """, 'tweet_1': """ MiniGemini is the coolest VLM, let's explain 🧶 """, 'tweet_2': """ MiniGemini is a vision language model that understands both image and text and also generates text and an image that goes best with the context! 🤯 """, 'tweet_3': """ This model has two image encoders (one CNN and one ViT) in parallel to capture the details in the images. I saw the same design in DocOwl 1.5 then it has a decoder to output text and also a prompt to be sent to SDXL for image generation (which works very well!) """, 'tweet_4': """ They adopt CLIP's ViT for low resolution visual embedding encoder and a CNN-based one for high resolution image encoding (precisely a pre-trained ConvNeXt). """, 'tweet_5': """ Thanks to the second encoder it can grasp details in images, which also comes in handy for e.g. document tasks (but see below the examples are mindblowing IMO). """, 'tweet_6': """ According to their reporting the model performs very well across many benchmarks compared to LLaVA 1.5 and Gemini Pro. """, 'ressources': """ Resources: [Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models](https://huggingface.co/papers/2403.18814) by Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu, Jiaya Jia (2024) [GitHub](https://github.com/dvlab-research/MGM) [Model Repository](https://huggingface.co/YanweiLi/MGM-13B-HD) """ }, 'fr': { 'title': 'MiniGemini', 'original_tweet': """ [Tweet de base](https://x.com/mervenoyann/status/1783864388249694520) (26 avril 2024) """, 'tweet_1': """ MiniGemini est le VLM le plus cool, voici pourquoi 🧶 """, 'tweet_2': """ MiniGemini est un modèle de langage/vision qui comprend à la fois l'image et le texte et qui génère également le texte et l'image qui s'accordent le mieux avec le contexte ! 🤯 """, 'tweet_3': """ Ce modèle possède deux encodeurs d'images (un ConvNet et un ViT) en parallèle pour capturer les détails dans les images. J'ai vu la même conception dans DocOwl 1.5 où il y a un décodeur pour produire du texte et aussi un prompt à envoyer au SDXL pour la génération d'images (qui fonctionne très bien !). """, 'tweet_4': """ Les auteurs adoptent le ViT de CLIP pour les enchâssements visuels de basse résolution et un ConvNet pour les images en haute résolution (précisément un ConvNeXt pré-entraîné). """, 'tweet_5': """ Grâce au second encodeur, il peut saisir des détails dans les images, ce qui s'avère également utile pour les tâches documentaires (voir ci-dessous les exemples époustouflants). """, 'tweet_6': """ D'après leur rapport, le modèle est très performant dans de nombreux benchmarks par rapport à LLaVA 1.5 et Gemini Pro. """, 'ressources': """ Resources : [Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models](https://huggingface.co/papers/2403.18814) de Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu, Jiaya Jia (2024) [GitHub](https://github.com/dvlab-research/MGM) [Modèle](https://huggingface.co/YanweiLi/MGM-13B-HD) """ } } def language_selector(): languages = {'EN': '🇬🇧', 'FR': '🇫🇷'} selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector') return 'en' if selected_lang == 'EN' else 'fr' left_column, right_column = st.columns([5, 1]) # Add a selector to the right column with right_column: lang = language_selector() # Add a title to the left column with left_column: st.title(translations[lang]["title"]) st.success(translations[lang]["original_tweet"], icon="ℹ️") st.markdown(""" """) st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/MiniGemini/image_1.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/MiniGemini/image_2.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/MiniGemini/image_3.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/MiniGemini/image_4.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_5"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/MiniGemini/image_5.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_6"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/MiniGemini/image_6.jpg", use_container_width=True) st.markdown(""" """) st.info(translations[lang]["ressources"], icon="📚") st.markdown(""" """) st.markdown(""" """) st.markdown(""" """) col1, col2, col3= st.columns(3) with col1: if lang == "en": if st.button('Previous paper', use_container_width=True): switch_page("DocOwl 1.5") else: if st.button('Papier précédent', use_container_width=True): switch_page("DocOwl 1.5") with col2: if lang == "en": if st.button("Home", use_container_width=True): switch_page("Home") else: if st.button("Accueil", use_container_width=True): switch_page("Home") with col3: if lang == "en": if st.button("Next paper", use_container_width=True): switch_page("CuMo") else: if st.button("Papier suivant", use_container_width=True): switch_page("PLLaVA")