import streamlit as st from streamlit_extras.switch_page_button import switch_page translations = { 'en': {'title': 'DenseConnector', 'original_tweet': """ [Original tweet](https://twitter.com/mervenoyann/status/1796089181988352216) (May 30, 2024) """, 'tweet_1': """ Do we fully leverage image encoders in vision language models? 👀 A new paper built a dense connector that does it better! Let's dig in 🧶 """, 'tweet_2': """ VLMs consist of an image encoder block, a projection layer that projects image embeddings to text embedding space and then a text decoder sequentially connected 📖 This [paper](https://t.co/DPQzbj0eWm) explores using intermediate states of image encoder and not a single output 🤩 """, 'tweet_3': """ The authors explore three different ways of instantiating dense connector: sparse token integration, sparse channel integration and dense channel integration (each of them just take intermediate outputs and put them together in different ways, see below). """, 'tweet_4': """ They explore all three of them integrated to LLaVA 1.5 and found out each of the new models are superior to the original LLaVA 1.5. """, 'tweet_5': """ I tried the [model](https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B) and it seems to work very well 🥹 The authors have released various [checkpoints](https://t.co/iF8zM2qvDa) based on different decoders (Vicuna 7/13B and Llama 3-8B). """, 'ressources': """ Ressources: [Dense Connector for MLLMs](https://arxiv.org/abs/2405.13800) by Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, Jingdong Wang (2024) [GitHub](https://github.com/HJYao00/DenseConnector) """ }, 'fr': { 'title': 'DenseConnector', 'original_tweet': """ [Tweet de base](https://twitter.com/mervenoyann/status/1796089181988352216) (en anglais) (30 mai 2024) """, 'tweet_1': """ Exploitons-nous pleinement les encodeurs d'images dans les modèles de langage/vision ? 👀 Un nouveau papier a construit un connecteur dense qui le fait mieux ! Creusons un peu 🧶 """, 'tweet_2': """ Les VLM se composent d'un bloc encodeur d'images, d'une couche de projection qui projette les enchâssements d'images dans l'espace d'enchâssement du texte, puis d'un décodeur de texte connecté séquentiellement 📖. Ce [papier](https://t.co/DPQzbj0eWm) explore l'utilisation d'états intermédiaires de l'encodeur d'images et non d'une sortie unique 🤩 """, 'tweet_3': """ Les auteurs explorent trois manières différentes d'instancier un connecteur dense : l'intégration de tokens épars, l'intégration de canaux épars et l'intégration de canaux denses (chacune d'entre elles prend simplement des sorties intermédiaires et les rassemble de différentes manières, voir ci-dessous). """, 'tweet_4': """ Ils ont exploré les trois modèles intégrés à LLaVA 1.5 et ont constaté que chacun des nouveaux modèles est supérieur au LLaVA 1.5 original. """, 'tweet_5': """ J'ai essayé le [modèle](https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B) et il semble fonctionner très bien 🥹 Les auteurs ont publié plusieurs [checkpoints](https://t.co/iF8zM2qvDa) basés sur différents décodeurs (Vicuna 7/13B et Llama 3-8B). """, 'ressources': """ Ressources : [Dense Connector for MLLMs](https://arxiv.org/abs/2405.13800) de Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, Jingdong Wang (2024) [GitHub](https://github.com/HJYao00/DenseConnector) """ } } def language_selector(): languages = {'EN': '🇬🇧', 'FR': '🇫🇷'} selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector') return 'en' if selected_lang == 'EN' else 'fr' left_column, right_column = st.columns([5, 1]) # Add a selector to the right column with right_column: lang = language_selector() # Add a title to the left column with left_column: st.title(translations[lang]["title"]) st.success(translations[lang]["original_tweet"], icon="ℹ️") st.markdown(""" """) st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/DenseConnector/image_1.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/DenseConnector/image_2.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/DenseConnector/image_3.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/DenseConnector/image_4.jpg", use_container_width=True) st.markdown(""" """) st.markdown(translations[lang]["tweet_5"], unsafe_allow_html=True) st.markdown(""" """) st.image("pages/DenseConnector/image_5.jpg", use_container_width=True) st.markdown(""" """) st.info(translations[lang]["ressources"], icon="📚") st.markdown(""" """) st.markdown(""" """) st.markdown(""" """) col1, col2, col3= st.columns(3) with col1: if lang == "en": if st.button('Previous paper', use_container_width=True): switch_page("CuMo") else: if st.button('Papier précédent', use_container_width=True): switch_page("CuMo") with col2: if lang == "en": if st.button("Home", use_container_width=True): switch_page("Home") else: if st.button("Accueil", use_container_width=True): switch_page("Home") with col3: if lang == "en": if st.button("Next paper", use_container_width=True): switch_page("Depth Anything v2") else: if st.button("Papier suivant", use_container_width=True): switch_page("Depth Anything v2")