File size: 6,137 Bytes
76858b3
 
 
 
add8211
 
 
76858b3
 
 
 
 
6b65a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76858b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f6d45
 
76858b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b264e47
76858b3
 
 
 
 
 
711c657
76858b3
 
 
 
 
 
 
 
 
 
 
 
711c657
76858b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b65a48
 
 
 
 
76858b3
 
 
 
 
 
 
 
 
6b65a48
76858b3
 
 
 
 
 
 
 
 
 
 
 
 
6b65a48
 
76858b3
 
6b65a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7042f43
6b65a48
 
7042f43
6b65a48
 
 
7042f43
6b65a48
 
 
 
7042f43
6b65a48
 
 
 
7042f43
6b65a48
 
9b4c572
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json
from langchain_huggingface import HuggingFaceEndpoint

from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.chains import LLMChain
# Load Google service account credentials from Hugging Face secrets
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]

# Google Sheets API v4 setup
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
client = gspread.authorize(creds)
spreadsheet_id = '1Jf1k7Q71ihsxBf-XQYyucamMy14q7IjhUDlU8ZzR_Nc'  # Replace with your actual spreadsheet ID
sheet = client.open_by_key(spreadsheet_id).sheet1

# Function to save user feedback to Google Sheets
def save_feedback(user_input, bot_response, rating, comment):
    feedback = [user_input, bot_response, rating, comment]
    sheet.append_row(feedback)

from huggingface_hub import login
login(token=st.secrets["HF_TOKEN"])

from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.embeddings.huggingface import HuggingFaceEmbeddings

db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True)



retriever = db.as_retriever(
    search_type="similarity",
    search_kwargs={'k': 2}
)


prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
        Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello  your only answer will be  Hi! comment puis-je vous aider?
Answer in french only
        
{context}
Vous devez répondre aux questions en français.

### QUESTION:
{question}
[/INST]
Answer in french only
 Vous devez répondre aux questions en français. please

 """

repo_id = "mistralai/Mistral-7B-Instruct-v0.3"

mistral_llm = HuggingFaceEndpoint(
    repo_id=repo_id, max_length=2048, temperature=0.02, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)

# Create prompt from prompt template
prompt = PromptTemplate(
    input_variables=["question"],
    template=prompt_template,
)

# Create llm chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)


retriever.search_kwargs = {'k':4}
qa = RetrievalQA.from_chain_type(
    llm=mistral_llm,
    chain_type="stuff",
    retriever=retriever,
    chain_type_kwargs={"prompt": prompt},
)

import streamlit as st

# Streamlit interface with improved aesthetics
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")

# Define function to handle user input and display chatbot response
def chatbot_response(user_input):
    response = qa.run(user_input)
    return response

# Session state to hold user input and chatbot response
if 'user_input' not in st.session_state:
    st.session_state.user_input = ""
if 'bot_response' not in st.session_state:
    st.session_state.bot_response = ""

# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])

with col1:
    st.image("Design 3_22.png", width=150, use_column_width=True)  # Adjust image path and size as needed

with col3:
    st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)  # Adjust image path and size as needed

# Streamlit components
st.markdown("""
    <style>
    .centered-text {
        text-align: center;
    }
    .centered-orange-text {
        text-align: center;
        color: darkorange;
    }
    </style>
    """, unsafe_allow_html=True)

# Use CSS classes to style the text
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)

# Input form for user interaction
with st.form(key='interaction_form'):
    st.session_state.user_input = st.text_input("You:", key="user_input_input")
    ask_button = st.form_submit_button("Ask 📨")  # Button to submit the question

    if ask_button and st.session_state.user_input.strip():
        st.session_state.bot_response = chatbot_response(st.session_state.user_input)

# Display the bot response if available
if st.session_state.bot_response:
    st.markdown("### Bot:")
    st.text_area("", value=st.session_state.bot_response, height=600)

    # Separate form for feedback submission
    with st.form(key='feedback_form'):
        st.markdown("### Évaluez la réponse :")
        rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1, key="rating")

        st.markdown("##### Laissez un commentaire ici:")
        comment = st.text_area("", key="comment")

        # Separate submit button for feedback
        feedback_submit_button = st.form_submit_button("Soumettre ton Feedback")
        
        if feedback_submit_button:
            if comment.strip():
                save_feedback(st.session_state.user_input, st.session_state.bot_response, rating, comment)
                st.success("Merci pour votre feedback!")
                # Clear the session state after submission
                st.session_state.user_input = ""
                st.session_state.bot_response = ""
            else:
                st.warning("Veuillez fournir un commentaire avant de soumettre votre retour.")

st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")