File size: 6,137 Bytes
76858b3 add8211 76858b3 6b65a48 76858b3 d2f6d45 76858b3 b264e47 76858b3 711c657 76858b3 711c657 76858b3 6b65a48 76858b3 6b65a48 76858b3 6b65a48 76858b3 6b65a48 7042f43 6b65a48 7042f43 6b65a48 7042f43 6b65a48 7042f43 6b65a48 7042f43 6b65a48 9b4c572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.chains import LLMChain
# Load Google service account credentials from Hugging Face secrets
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]
# Google Sheets API v4 setup
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
client = gspread.authorize(creds)
spreadsheet_id = '1Jf1k7Q71ihsxBf-XQYyucamMy14q7IjhUDlU8ZzR_Nc' # Replace with your actual spreadsheet ID
sheet = client.open_by_key(spreadsheet_id).sheet1
# Function to save user feedback to Google Sheets
def save_feedback(user_input, bot_response, rating, comment):
feedback = [user_input, bot_response, rating, comment]
sheet.append_row(feedback)
from huggingface_hub import login
login(token=st.secrets["HF_TOKEN"])
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True)
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={'k': 2}
)
prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider?
Answer in french only
{context}
Vous devez répondre aux questions en français.
### QUESTION:
{question}
[/INST]
Answer in french only
Vous devez répondre aux questions en français. please
"""
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
mistral_llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=2048, temperature=0.02, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)
# Create prompt from prompt template
prompt = PromptTemplate(
input_variables=["question"],
template=prompt_template,
)
# Create llm chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
retriever.search_kwargs = {'k':4}
qa = RetrievalQA.from_chain_type(
llm=mistral_llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt},
)
import streamlit as st
# Streamlit interface with improved aesthetics
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
# Define function to handle user input and display chatbot response
def chatbot_response(user_input):
response = qa.run(user_input)
return response
# Session state to hold user input and chatbot response
if 'user_input' not in st.session_state:
st.session_state.user_input = ""
if 'bot_response' not in st.session_state:
st.session_state.bot_response = ""
# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])
with col1:
st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed
with col3:
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed
# Streamlit components
st.markdown("""
<style>
.centered-text {
text-align: center;
}
.centered-orange-text {
text-align: center;
color: darkorange;
}
</style>
""", unsafe_allow_html=True)
# Use CSS classes to style the text
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)
# Input form for user interaction
with st.form(key='interaction_form'):
st.session_state.user_input = st.text_input("You:", key="user_input_input")
ask_button = st.form_submit_button("Ask 📨") # Button to submit the question
if ask_button and st.session_state.user_input.strip():
st.session_state.bot_response = chatbot_response(st.session_state.user_input)
# Display the bot response if available
if st.session_state.bot_response:
st.markdown("### Bot:")
st.text_area("", value=st.session_state.bot_response, height=600)
# Separate form for feedback submission
with st.form(key='feedback_form'):
st.markdown("### Évaluez la réponse :")
rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1, key="rating")
st.markdown("##### Laissez un commentaire ici:")
comment = st.text_area("", key="comment")
# Separate submit button for feedback
feedback_submit_button = st.form_submit_button("Soumettre ton Feedback")
if feedback_submit_button:
if comment.strip():
save_feedback(st.session_state.user_input, st.session_state.bot_response, rating, comment)
st.success("Merci pour votre feedback!")
# Clear the session state after submission
st.session_state.user_input = ""
st.session_state.bot_response = ""
else:
st.warning("Veuillez fournir un commentaire avant de soumettre votre retour.")
st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")
|