Spaces:
Build error
Build error
| import os | |
| import streamlit as st | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_huggingface import HuggingFaceEndpoint | |
| from langchain.prompts import PromptTemplate | |
| from langchain.schema.runnable import RunnablePassthrough | |
| from langchain.chains import LLMChain | |
| from huggingface_hub import login | |
| login(token=st.secrets["HF_TOKEN"]) | |
| from langchain_community.document_loaders import TextLoader | |
| from langchain_text_splitters import CharacterTextSplitter | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain.chains import RetrievalQA | |
| from langchain.prompts import PromptTemplate | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True) | |
| retriever = db.as_retriever( | |
| search_type="similarity", | |
| search_kwargs={'k': 2} | |
| ) | |
| prompt_template = """ | |
| ### [INST] | |
| Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH | |
| Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? | |
| Answer in french only | |
| {context} | |
| Vous devez répondre aux questions en français. | |
| ### QUESTION: | |
| {question} | |
| [/INST] | |
| Answer in french only | |
| Vous devez répondre aux questions en français. | |
| """ | |
| repo_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
| mistral_llm = HuggingFaceEndpoint( | |
| repo_id=repo_id, max_length=2048, temperature=0.02, huggingfacehub_api_token=st.secrets["HF_TOKEN"] | |
| ) | |
| # Create prompt from prompt template | |
| prompt = PromptTemplate( | |
| input_variables=["question"], | |
| template=prompt_template, | |
| ) | |
| # Create llm chain | |
| llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) | |
| retriever.search_kwargs = {'k':4} | |
| qa = RetrievalQA.from_chain_type( | |
| llm=mistral_llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| chain_type_kwargs={"prompt": prompt}, | |
| ) | |
| import streamlit as st | |
| # Streamlit interface with improved aesthetics | |
| st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") | |
| # Define function to handle user input and display chatbot response | |
| def chatbot_response(user_input): | |
| response = qa.run(user_input) | |
| return response | |
| # Create columns for logos | |
| col1, col2, col3 = st.columns([2, 3, 2]) | |
| with col1: | |
| st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed | |
| with col3: | |
| st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed | |
| # Streamlit components | |
| # Ajouter un peu de CSS pour centrer le texte | |
| # Ajouter un peu de CSS pour centrer le texte et le colorer en orange foncé | |
| st.markdown(""" | |
| <style> | |
| .centered-text { | |
| text-align: center; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Utiliser la classe CSS pour centrer et colorer le texte | |
| st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True) | |
| st.markdown(""" | |
| <style> | |
| .centered-orange-text { | |
| text-align: center; | |
| color: darkorange; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Centrer le texte principal | |
| # Centrer et colorer en orange foncé le texte spécifique | |
| st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True) | |
| # Input and button for user interaction | |
| user_input = st.text_input("You:", "") | |
| submit_button = st.button("Ask 📨") | |
| # Handle user input | |
| if submit_button: | |
| if user_input.strip() != "": | |
| bot_response = chatbot_response(user_input) | |
| st.markdown("### Bot:") | |
| st.text_area("", value=bot_response, height=600) | |
| else: | |
| st.warning("⚠️ Please enter a message.") | |
| # Motivational quote at the bottom | |
| st.markdown("---") | |
| st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.") | |