import gradio as gr import subprocess from deep_translator import GoogleTranslator import torch from llava.model.builder import load_pretrained_model from llava.mm_utils import tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from llava.conversation import conv_templates from decord import VideoReader, cpu import numpy as np import copy # Gerekli kütüphanelerin kurulumu subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) subprocess.run("pip install deep_translator", shell=True) # Çevirmen nesnesi oluştur translator = GoogleTranslator(source='tr', target='en') translator_reverse = GoogleTranslator(source='en', target='tr') title = "# 🙋🏻‍♂️🌟Tonic'in 🌋📹LLaVA-Video'suna Hoş Geldiniz!" description1 = """**🌋📹LLaVA-Video-7B-Qwen2**, ... """ description2 = """ ... """ join_us = """ ## Bize Katılın: ... """ def load_video(video_path, max_frames_num, fps=1, force_sample=False): if max_frames_num == 0: return np.zeros((1, 336, 336, 3)) vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) total_frame_num = len(vr) fps = round(vr.get_avg_fps()/fps) frame_idx = [i for i in range(0, len(vr), fps)] frame_time = [i/vr.get_avg_fps() for i in frame_idx] if len(frame_idx) > max_frames_num or force_sample: sample_fps = max_frames_num uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) frame_idx = uniform_sampled_frames.tolist() frame_time = [i/vr.get_avg_fps() for i in frame_idx] frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) spare_frames = vr.get_batch(frame_idx).asnumpy() return spare_frames, frame_time, total_frame_num / vr.get_avg_fps() # Model yükleme pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" model_name = "llava_qwen" device = "cuda" if torch.cuda.is_available() else "cpu" device_map = "auto" print("Model yükleniyor...") tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) model.eval() print("Model başarıyla yüklendi!") def process_video(video_path, question): try: max_frames_num = 64 video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True) video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16() video = [video] conv_template = "qwen_1_5" time_instruction = f"Video {video_time:.2f} saniye sürmektedir ve {len(video[0])} kare uniform olarak örneklenmiştir. Bu kareler {frame_time} konumlarında bulunmaktadır. Lütfen bu videoyla ilgili aşağıdaki soruları cevaplayın." # Soruyu İngilizce'ye çevir question_en = translator.translate(question) full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question_en}" conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], full_question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").to(device) with torch.no_grad(): output = model.generate( input_ids, images=video, modalities=["video"], do_sample=False, temperature=0, max_new_tokens=4096, ) response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip() # Cevabı Türkçe'ye çevir response_tr = translator_reverse.translate(response) return response_tr except Exception as e: return f"Bir hata oluştu: {str(e)}" def gradio_interface(video_file, question): if video_file is None: return "Lütfen bir video dosyası yükleyin." response = process_video(video_file, question) return response with gr.Blocks() as demo: gr.Markdown(title) with gr.Row(): with gr.Group(): gr.Markdown(description1) with gr.Group(): gr.Markdown(description2) with gr.Accordion("Bize Katılın", open=False): gr.Markdown(join_us) with gr.Row(): with gr.Column(): video_input = gr.Video() question_input = gr.Textbox(label="🙋🏻‍♂️Kullanıcı Sorusu", placeholder="Video hakkında bir soru sorun...") submit_button = gr.Button("🌋📹LLaVA-Video'ya Sor") output = gr.Textbox(label="🌋📹LLaVA-Video") submit_button.click( fn=gradio_interface, inputs=[video_input, question_input], outputs=output ) if __name__ == "__main__": demo.launch(show_error=True)