Spaces:
Runtime error
Runtime error
File size: 2,376 Bytes
a324479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
import jax
from PIL import Image
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
import jax.numpy as jnp
import numpy as np
title = "🧨 ControlNet on Segment Anything 🤗"
description = "This is a demo on ControlNet based on Segment Anything"
examples = [["a modern main room of a house", "low quality", "condition_image_1.png", 50, 4]]
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"mfidabel/controlnet-segment-anything", dtype=jnp.float32
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
)
# Add ControlNet params and Replicate
params["controlnet"] = controlnet_params
p_params = replicate(params)
# Inference Function
def infer(prompts, negative_prompts, image, num_inference_steps, seed):
rng = jax.random.PRNGKey(int(seed))
num_inference_steps = int(num_inference_steps)
image = Image.fromarray(image, mode="RGB")
num_samples = jax.device_count()
p_rng = jax.random.split(rng, jax.device_count())
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([image] * num_samples)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=p_rng,
num_inference_steps=num_inference_steps,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
print(output[0].shape)
final_image = [np.array(x[0]*255, dtype=np.uint8) for x in output]
del output
return final_image
gr.Interface(fn = infer,
inputs = ["text", "text", "image", "number", "number"],
outputs = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto", preview=True),
title = title,
description = description,
examples = examples).launch() |