Spaces:
Runtime error
Runtime error
Added Segmentation to the Space
Browse files- app.py +135 -80
- examples/condition_image_1.jpeg +0 -0
- examples/condition_image_2.jpeg +0 -0
- examples/condition_image_3.jpeg +0 -0
- examples/condition_image_4.jpeg +0 -0
- examples/condition_image_5.jpeg +0 -0
- examples/condition_image_6.jpeg +0 -0
- examples/condition_image_7.jpeg +0 -0
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,119 +1,161 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
from PIL import Image
|
4 |
-
|
5 |
-
from flax.training.common_utils import shard
|
6 |
-
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
|
7 |
-
import jax.numpy as jnp
|
8 |
import numpy as np
|
|
|
|
|
9 |
import gc
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
"mfidabel/controlnet-segment-anything", dtype=jnp.float32
|
14 |
-
)
|
15 |
|
16 |
-
|
17 |
-
"
|
18 |
-
)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
# Add ControlNet params and Replicate
|
21 |
-
params["controlnet"] = controlnet_params
|
22 |
-
p_params = replicate(params)
|
23 |
|
24 |
# Description
|
25 |
title = "# 🧨 ControlNet on Segment Anything 🤗"
|
26 |
description = """This is a demo on 🧨 ControlNet based on Meta's [Segment Anything Model](https://segment-anything.com/).
|
27 |
|
28 |
-
Upload
|
29 |
-
|
30 |
-
⌛️ It takes about
|
31 |
-
|
32 |
You can obtain the Segmentation Map of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mfidabel/JAX_SPRINT_2023/blob/main/Segment_Anything_JAX_SPRINT.ipynb)
|
33 |
-
|
34 |
|
35 |
-
A huge thanks goes out to @
|
36 |
-
|
37 |
Check out our [Model Card 🧨](https://huggingface.co/mfidabel/controlnet-segment-anything)
|
|
|
38 |
"""
|
39 |
|
40 |
about = """
|
41 |
-
|
42 |
-
|
43 |
# 👨💻 About the model
|
44 |
-
|
45 |
This [model](https://huggingface.co/mfidabel/controlnet-segment-anything) is based on the [ControlNet Model](https://huggingface.co/blog/controlnet), which allow us to generate Images using some sort of condition image. For this model, we selected the segmentation maps produced by Meta's new segmentation model called [Segment Anything Model](https://github.com/facebookresearch/segment-anything) as the condition image. We then trained the model to generate images based on the structure of the segmentation maps and the text prompts given.
|
|
|
46 |
|
47 |
-
|
48 |
# 💾 About the dataset
|
49 |
-
|
50 |
For the training, we generated a segmented dataset based on the [COYO-700M](https://huggingface.co/datasets/kakaobrain/coyo-700m) dataset. The dataset provided us with the images, and the text prompts. For the segmented images, we used [Segment Anything Model](https://github.com/facebookresearch/segment-anything). We then created 8k samples to train our model on, which isn't a lot, but as a team, we have been very busy with many other responsibilities and time constraints, which made it challenging to dedicate a lot of time to generating a larger dataset. Despite the constraints we faced, we have still managed to achieve some nice results 🙌
|
51 |
-
|
52 |
You can check the generated datasets below ⬇️
|
53 |
- [sam-coyo-2k](https://huggingface.co/datasets/mfidabel/sam-coyo-2k)
|
54 |
- [sam-coyo-2.5k](https://huggingface.co/datasets/mfidabel/sam-coyo-2.5k)
|
55 |
- [sam-coyo-3k](https://huggingface.co/datasets/mfidabel/sam-coyo-3k)
|
56 |
-
|
57 |
"""
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
["
|
63 |
-
["
|
64 |
-
["
|
65 |
-
["painting of
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
68 |
|
69 |
# Inference Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def infer(prompts, negative_prompts, image, num_inference_steps = 50, seed = 4, num_samples = 4):
|
71 |
try:
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
num_inference_steps = int(num_inference_steps)
|
74 |
-
image = Image.fromarray(image, mode="RGB")
|
75 |
-
num_samples = max(jax.device_count(), int(num_samples))
|
76 |
-
p_rng = jax.random.split(rng, jax.device_count())
|
77 |
-
|
78 |
-
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
|
79 |
-
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
|
80 |
-
processed_image = pipe.prepare_image_inputs([image] * num_samples)
|
81 |
-
|
82 |
-
prompt_ids = shard(prompt_ids)
|
83 |
-
negative_prompt_ids = shard(negative_prompt_ids)
|
84 |
-
processed_image = shard(processed_image)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
del negative_prompt_ids
|
97 |
-
del processed_image
|
98 |
-
del prompt_ids
|
99 |
-
|
100 |
-
output = output.reshape((num_samples,) + output.shape[-3:])
|
101 |
-
final_image = [np.array(x*255, dtype=np.uint8) for x in output]
|
102 |
-
print(output.shape)
|
103 |
del output
|
104 |
|
105 |
except Exception as e:
|
106 |
print("Error: " + str(e))
|
107 |
-
final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
|
108 |
finally:
|
109 |
gc.collect()
|
110 |
-
|
|
|
111 |
|
112 |
|
113 |
-
default_example = examples[5]
|
114 |
-
|
115 |
cond_img = gr.Image(label="Input", shape=(512, 512), value=default_example[2])\
|
116 |
-
.style(height=
|
|
|
|
|
|
|
117 |
|
118 |
output = gr.Gallery(label="Generated images")\
|
119 |
.style(height=200, rows=[2], columns=[2], object_fit="contain")
|
@@ -132,17 +174,16 @@ with gr.Blocks(css=css) as demo:
|
|
132 |
|
133 |
with gr.Column():
|
134 |
# Examples
|
135 |
-
gr.Markdown(
|
136 |
-
gr.Examples(examples=examples,
|
137 |
-
inputs=[prompt, negative_prompt, cond_img],
|
138 |
-
outputs=output,
|
139 |
-
fn=infer,
|
140 |
-
examples_per_page=4)
|
141 |
|
142 |
# Images
|
143 |
with gr.Row(variant="panel"):
|
144 |
-
with gr.Column(scale=
|
145 |
cond_img.render()
|
|
|
|
|
|
|
|
|
146 |
with gr.Column(scale=1):
|
147 |
output.render()
|
148 |
|
@@ -158,15 +199,29 @@ with gr.Blocks(css=css) as demo:
|
|
158 |
seed = gr.Slider(0, 1024, 4, step=1, label="Seed")
|
159 |
num_samples = gr.Slider(1, 4, 4, step=1, label="Nº Samples")
|
160 |
|
161 |
-
|
|
|
162 |
# TODO: Download Button
|
163 |
|
164 |
with gr.Row():
|
165 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
submit.click(infer,
|
168 |
inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples],
|
169 |
-
outputs = output)
|
|
|
|
|
|
|
|
|
170 |
|
171 |
demo.queue()
|
172 |
demo.launch()
|
|
|
1 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
2 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
3 |
from PIL import Image
|
4 |
+
import gradio as gr
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
+
import requests
|
7 |
+
import torch
|
8 |
import gc
|
9 |
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# Download and Create SAM Model
|
13 |
+
|
14 |
+
print("[Downloading SAM Weights]")
|
15 |
+
SAM_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
16 |
+
|
17 |
+
r = requests.get(SAM_URL, allow_redirects=True)
|
18 |
+
|
19 |
+
print("[Writing SAM Weights]")
|
20 |
+
|
21 |
+
with open("./sam_vit_h_4b8939.pth", "wb") as sam_weights:
|
22 |
+
sam_weights.write(r.content)
|
23 |
+
|
24 |
+
del r
|
25 |
+
gc.collect()
|
26 |
+
|
27 |
+
sam = sam_model_registry["vit_h"](checkpoint="./sam_vit_h_4b8939.pth").to(device)
|
28 |
+
|
29 |
+
mask_generator = SamAutomaticMaskGenerator(sam)
|
30 |
+
gc.collect()
|
31 |
+
|
32 |
+
# Create ControlNet Pipeline
|
33 |
|
34 |
+
print("Creating ControlNet Pipeline")
|
|
|
|
|
35 |
|
36 |
+
controlnet = ControlNetModel.from_pretrained(
|
37 |
+
"mfidabel/controlnet-segment-anything", torch_dtype=torch.float16
|
38 |
+
).to(device)
|
39 |
+
|
40 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
41 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, safety_check=None
|
42 |
+
).to(device)
|
43 |
|
|
|
|
|
|
|
44 |
|
45 |
# Description
|
46 |
title = "# 🧨 ControlNet on Segment Anything 🤗"
|
47 |
description = """This is a demo on 🧨 ControlNet based on Meta's [Segment Anything Model](https://segment-anything.com/).
|
48 |
|
49 |
+
Upload an Image, Segment it with Segment Anything, write a prompt, and generate images 🤗
|
50 |
+
|
51 |
+
⌛️ It takes about 20~ seconds to generate 4 samples, to get faster results, don't forget to reduce the Nº Samples to 1.
|
52 |
+
|
53 |
You can obtain the Segmentation Map of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mfidabel/JAX_SPRINT_2023/blob/main/Segment_Anything_JAX_SPRINT.ipynb)
|
|
|
54 |
|
55 |
+
A huge thanks goes out to @GoogleCloud, for providing us with powerful TPUs that enabled us to train this model; and to the @HuggingFace Team for organizing the sprint.
|
56 |
+
|
57 |
Check out our [Model Card 🧨](https://huggingface.co/mfidabel/controlnet-segment-anything)
|
58 |
+
|
59 |
"""
|
60 |
|
61 |
about = """
|
|
|
|
|
62 |
# 👨💻 About the model
|
63 |
+
|
64 |
This [model](https://huggingface.co/mfidabel/controlnet-segment-anything) is based on the [ControlNet Model](https://huggingface.co/blog/controlnet), which allow us to generate Images using some sort of condition image. For this model, we selected the segmentation maps produced by Meta's new segmentation model called [Segment Anything Model](https://github.com/facebookresearch/segment-anything) as the condition image. We then trained the model to generate images based on the structure of the segmentation maps and the text prompts given.
|
65 |
+
|
66 |
|
67 |
+
|
68 |
# 💾 About the dataset
|
69 |
+
|
70 |
For the training, we generated a segmented dataset based on the [COYO-700M](https://huggingface.co/datasets/kakaobrain/coyo-700m) dataset. The dataset provided us with the images, and the text prompts. For the segmented images, we used [Segment Anything Model](https://github.com/facebookresearch/segment-anything). We then created 8k samples to train our model on, which isn't a lot, but as a team, we have been very busy with many other responsibilities and time constraints, which made it challenging to dedicate a lot of time to generating a larger dataset. Despite the constraints we faced, we have still managed to achieve some nice results 🙌
|
71 |
+
|
72 |
You can check the generated datasets below ⬇️
|
73 |
- [sam-coyo-2k](https://huggingface.co/datasets/mfidabel/sam-coyo-2k)
|
74 |
- [sam-coyo-2.5k](https://huggingface.co/datasets/mfidabel/sam-coyo-2.5k)
|
75 |
- [sam-coyo-3k](https://huggingface.co/datasets/mfidabel/sam-coyo-3k)
|
76 |
+
|
77 |
"""
|
78 |
|
79 |
+
gif_html = """ <img src="https://github.com/mfidabel/JAX_SPRINT_2023/blob/8632f0fde7388d7a4fc57225c96ef3b8411b3648/EX_1.gif?raw=true" alt= “” height="50%" class="about"> """
|
80 |
+
|
81 |
+
examples = [["photo of a futuristic dining table, high quality, tricolor", "low quality, deformed, blurry, points", "examples/condition_image_1.jpeg"],
|
82 |
+
["a monochrome photo of henry cavil using a shirt, high quality", "low quality, low res, deformed", "examples/condition_image_2.jpeg"],
|
83 |
+
["photo of a japanese living room, high quality, coherent", "low quality, colors, saturation, extreme brightness, blurry, low res", "examples/condition_image_3.jpeg"],
|
84 |
+
["living room, detailed, high quality", "low quality, low resolution, render, oversaturated, low contrast", "examples/condition_image_4.jpeg"],
|
85 |
+
["painting of the bodiam castle, Vicent Van Gogh style, Starry Night", "low quality, low resolution, render, oversaturated, low contrast", "examples/condition_image_5.jpeg"],
|
86 |
+
["painting of food, olive oil can, purple wine, green cabbage, chili peppers, pablo picasso style, high quality", "low quality, low resolution, render, oversaturated, low contrast, realistic", "examples/condition_image_6.jpeg"],
|
87 |
+
["Katsushika Hokusai painting of mountains, a sky and desert landscape, The Great Wave off Kanagawa style, colorful",
|
88 |
+
"low quality, low resolution, render, oversaturated, low contrast, realistic", "examples/condition_image_7.jpeg"]]
|
89 |
+
|
90 |
+
default_example = examples[4]
|
91 |
+
|
92 |
+
examples = examples[::-1]
|
93 |
|
94 |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
95 |
|
96 |
# Inference Function
|
97 |
+
def show_anns(anns):
|
98 |
+
if len(anns) == 0:
|
99 |
+
return
|
100 |
+
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
|
101 |
+
h, w = anns[0]['segmentation'].shape
|
102 |
+
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
|
103 |
+
for ann in sorted_anns:
|
104 |
+
m = ann['segmentation']
|
105 |
+
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
106 |
+
for i in range(3):
|
107 |
+
img[:,:,i] = np.random.randint(255, dtype=np.uint8)
|
108 |
+
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m*255)))
|
109 |
+
|
110 |
+
return final_img
|
111 |
+
|
112 |
+
def segment_image(image, seed = 0):
|
113 |
+
# Generate Masks
|
114 |
+
np.random.seed(int(seed))
|
115 |
+
masks = mask_generator.generate(image)
|
116 |
+
torch.cuda.empty_cache()
|
117 |
+
# Create map
|
118 |
+
map = show_anns(masks)
|
119 |
+
del masks
|
120 |
+
gc.collect()
|
121 |
+
torch.cuda.empty_cache()
|
122 |
+
return map
|
123 |
+
|
124 |
def infer(prompts, negative_prompts, image, num_inference_steps = 50, seed = 4, num_samples = 4):
|
125 |
try:
|
126 |
+
# Segment Image
|
127 |
+
print("Segmenting Everything")
|
128 |
+
segmented_map = segment_image(image, seed)
|
129 |
+
yield segmented_map, [Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))] * num_samples
|
130 |
+
# Generate
|
131 |
+
rng = torch.Generator(device="cpu").manual_seed(seed)
|
132 |
num_inference_steps = int(num_inference_steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
print(f"Generating Prompt: {prompts} \nNegative Prompt: {negative_prompts} \nSamples:{num_samples}")
|
135 |
+
output = pipe([prompts] * num_samples,
|
136 |
+
[segmented_map] * num_samples,
|
137 |
+
negative_prompt = [negative_prompts] * num_samples,
|
138 |
+
generator = rng,
|
139 |
+
num_inference_steps = num_inference_steps)
|
140 |
+
|
141 |
+
|
142 |
+
final_image = output.images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
del output
|
144 |
|
145 |
except Exception as e:
|
146 |
print("Error: " + str(e))
|
147 |
+
final_image = segmented_map = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
|
148 |
finally:
|
149 |
gc.collect()
|
150 |
+
torch.cuda.empty_cache()
|
151 |
+
yield segmented_map, final_image
|
152 |
|
153 |
|
|
|
|
|
154 |
cond_img = gr.Image(label="Input", shape=(512, 512), value=default_example[2])\
|
155 |
+
.style(height=400)
|
156 |
+
|
157 |
+
segm_img = gr.Image(label="Segmented Image", shape=(512, 512), interactive=False)\
|
158 |
+
.style(height=400)
|
159 |
|
160 |
output = gr.Gallery(label="Generated images")\
|
161 |
.style(height=200, rows=[2], columns=[2], object_fit="contain")
|
|
|
174 |
|
175 |
with gr.Column():
|
176 |
# Examples
|
177 |
+
gr.Markdown(gif_html)
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
# Images
|
180 |
with gr.Row(variant="panel"):
|
181 |
+
with gr.Column(scale=1):
|
182 |
cond_img.render()
|
183 |
+
|
184 |
+
with gr.Column(scale=1):
|
185 |
+
segm_img.render()
|
186 |
+
|
187 |
with gr.Column(scale=1):
|
188 |
output.render()
|
189 |
|
|
|
199 |
seed = gr.Slider(0, 1024, 4, step=1, label="Seed")
|
200 |
num_samples = gr.Slider(1, 4, 4, step=1, label="Nº Samples")
|
201 |
|
202 |
+
segment_btn = gr.Button("Segment")
|
203 |
+
submit = gr.Button("Segment & Generate Images")
|
204 |
# TODO: Download Button
|
205 |
|
206 |
with gr.Row():
|
207 |
+
with gr.Column():
|
208 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
209 |
+
gr.Examples(examples=examples,
|
210 |
+
inputs=[prompt, negative_prompt, cond_img],
|
211 |
+
outputs=output,
|
212 |
+
fn=infer,
|
213 |
+
examples_per_page=4)
|
214 |
+
|
215 |
+
with gr.Column():
|
216 |
+
gr.Markdown(about, elem_classes="about")
|
217 |
|
218 |
submit.click(infer,
|
219 |
inputs=[prompt, negative_prompt, cond_img, num_steps, seed, num_samples],
|
220 |
+
outputs = [segm_img, output])
|
221 |
+
|
222 |
+
segment_btn.click(segment_image,
|
223 |
+
inputs=[cond_img, seed],
|
224 |
+
outputs=segm_img)
|
225 |
|
226 |
demo.queue()
|
227 |
demo.launch()
|
examples/condition_image_1.jpeg
ADDED
examples/condition_image_2.jpeg
ADDED
examples/condition_image_3.jpeg
ADDED
examples/condition_image_4.jpeg
ADDED
examples/condition_image_5.jpeg
ADDED
examples/condition_image_6.jpeg
ADDED
examples/condition_image_7.jpeg
ADDED
requirements.txt
CHANGED
@@ -5,4 +5,7 @@ jax[cuda11_pip]
|
|
5 |
jaxlib
|
6 |
git+https://github.com/huggingface/diffusers@main
|
7 |
opencv-python
|
8 |
-
torch
|
|
|
|
|
|
|
|
5 |
jaxlib
|
6 |
git+https://github.com/huggingface/diffusers@main
|
7 |
opencv-python
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
11 |
+
accelerate
|