mgmtprofessor
commited on
Upload 2 files
Browse files- app.py +177 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import dropbox
|
3 |
+
import streamlit as st
|
4 |
+
import torch
|
5 |
+
import pandas as pd
|
6 |
+
import time
|
7 |
+
from tqdm import tqdm
|
8 |
+
from simpletransformers.classification import ClassificationModel
|
9 |
+
|
10 |
+
# Set up Streamlit app
|
11 |
+
st.title("Document Scoring App for Various Categories")
|
12 |
+
|
13 |
+
# Model directories and corresponding Dropbox paths
|
14 |
+
model_directories = {
|
15 |
+
'finance': 'models/finance_model',
|
16 |
+
'accounting': 'models/accounting_model',
|
17 |
+
'technology': 'models/technology_model',
|
18 |
+
'international': 'models/international_model',
|
19 |
+
'operations': 'models/operations_model',
|
20 |
+
'marketing': 'models/marketing_model',
|
21 |
+
'management': 'models/management_model',
|
22 |
+
'legal': 'models/legal_model'
|
23 |
+
}
|
24 |
+
|
25 |
+
# Dropbox paths to main model directories
|
26 |
+
dropbox_model_paths = {
|
27 |
+
'international': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/international_model',
|
28 |
+
'finance': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/finance_model',
|
29 |
+
'accounting': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/accounting_model',
|
30 |
+
'technology': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/technology_model',
|
31 |
+
'operations': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/operations_model',
|
32 |
+
'marketing': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/marketing_model',
|
33 |
+
'management': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/management_model',
|
34 |
+
'legal': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/legal_model'
|
35 |
+
}
|
36 |
+
|
37 |
+
# Dropbox paths to model checkpoints (all 8 models)
|
38 |
+
dropbox_checkpoint_paths = {
|
39 |
+
'international': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/international_model/checkpoint-174-epoch-3',
|
40 |
+
'finance': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/finance_model/checkpoint-174-epoch-3',
|
41 |
+
'accounting': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/accounting_model/checkpoint-174-epoch-3',
|
42 |
+
'technology': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/technology_model/checkpoint-174-epoch-3',
|
43 |
+
'operations': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/operations_model/checkpoint-174-epoch-3',
|
44 |
+
'marketing': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/marketing_model/checkpoint-174-epoch-3',
|
45 |
+
'management': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/management_model/checkpoint-174-epoch-3',
|
46 |
+
'legal': '/3) Conferences and Publications/2) Current_Projects/VIVEK/COMPLETE_REWORK/legal_model/checkpoint-174-epoch-3'
|
47 |
+
}
|
48 |
+
|
49 |
+
# Check if CUDA is available
|
50 |
+
use_cuda = torch.cuda.is_available()
|
51 |
+
|
52 |
+
# Function to download files from Dropbox recursively, including checkpoint directories
|
53 |
+
def download_files_from_dropbox(dbx, dropbox_path, local_dir):
|
54 |
+
# List all files and subfolders in the Dropbox path
|
55 |
+
try:
|
56 |
+
for entry in dbx.files_list_folder(dropbox_path).entries:
|
57 |
+
local_path = os.path.join(local_dir, entry.name)
|
58 |
+
if isinstance(entry, dropbox.files.FileMetadata):
|
59 |
+
# It's a file, download it
|
60 |
+
with open(local_path, "wb") as f:
|
61 |
+
metadata, res = dbx.files_download(path=entry.path_lower)
|
62 |
+
f.write(res.content)
|
63 |
+
elif isinstance(entry, dropbox.files.FolderMetadata):
|
64 |
+
# It's a folder, create it locally and download its contents
|
65 |
+
os.makedirs(local_path, exist_ok=True)
|
66 |
+
download_files_from_dropbox(dbx, entry.path_lower, local_path)
|
67 |
+
except dropbox.exceptions.ApiError as err:
|
68 |
+
st.error(f"Dropbox API error: {err}")
|
69 |
+
|
70 |
+
# Function to download models and checkpoints from Dropbox
|
71 |
+
def download_model(category):
|
72 |
+
model_path = model_directories[category]
|
73 |
+
if not os.path.exists(model_path):
|
74 |
+
os.makedirs(model_path, exist_ok=True)
|
75 |
+
|
76 |
+
dbx = dropbox.Dropbox(st.secrets["dropbox_api_key"])
|
77 |
+
|
78 |
+
# Download the main model files
|
79 |
+
st.write(f"Downloading {category} model...")
|
80 |
+
download_files_from_dropbox(dbx, dropbox_model_paths[category], model_path)
|
81 |
+
|
82 |
+
# Download the checkpoint files if available
|
83 |
+
if category in dropbox_checkpoint_paths:
|
84 |
+
checkpoint_path = os.path.join(model_path, "checkpoint-174-epoch-3")
|
85 |
+
os.makedirs(checkpoint_path, exist_ok=True)
|
86 |
+
st.write(f"Downloading checkpoint for {category} model...")
|
87 |
+
download_files_from_dropbox(dbx, dropbox_checkpoint_paths[category], checkpoint_path)
|
88 |
+
|
89 |
+
st.success(f"{category} model and checkpoints downloaded successfully.")
|
90 |
+
|
91 |
+
# Function to load a model, skipping if it can't be loaded
|
92 |
+
def load_model(category):
|
93 |
+
model_path = model_directories[category]
|
94 |
+
# Ensure the model is downloaded
|
95 |
+
download_model(category)
|
96 |
+
try:
|
97 |
+
model = ClassificationModel(
|
98 |
+
"bert",
|
99 |
+
model_path,
|
100 |
+
use_cuda=use_cuda,
|
101 |
+
args={"silent": True} # Suppress output
|
102 |
+
)
|
103 |
+
return model
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Failed to load model for {category}: {e}")
|
106 |
+
return None
|
107 |
+
|
108 |
+
# Function to score a document and return the prediction and probability for class '1'
|
109 |
+
def score_document(model, text_data):
|
110 |
+
if isinstance(text_data, str):
|
111 |
+
text_data = [text_data]
|
112 |
+
|
113 |
+
predictions, raw_outputs = model.predict(text_data)
|
114 |
+
|
115 |
+
# Get the probability associated with class '1'
|
116 |
+
probability_class_1 = torch.nn.functional.softmax(torch.tensor(raw_outputs[0]), dim=0)[1].item()
|
117 |
+
|
118 |
+
return predictions[0], probability_class_1
|
119 |
+
|
120 |
+
# Let the user upload a file
|
121 |
+
doc_file = st.file_uploader("Upload a document (.txt)", type=["txt"])
|
122 |
+
|
123 |
+
# Track the start time
|
124 |
+
start_time = time.time()
|
125 |
+
|
126 |
+
# Make predictions when a file is uploaded
|
127 |
+
if doc_file is not None:
|
128 |
+
# Read the content of the uploaded .txt file
|
129 |
+
text_data = doc_file.read().decode("utf-8")
|
130 |
+
|
131 |
+
# Initialize an empty DataFrame for results
|
132 |
+
result_df = pd.DataFrame(columns=["Category", "Prediction", "Probability"])
|
133 |
+
|
134 |
+
# Progress bar
|
135 |
+
progress_bar = st.progress(0)
|
136 |
+
total_categories = len(model_directories)
|
137 |
+
|
138 |
+
for i, category in enumerate(tqdm(model_directories.keys(), desc="Scoring documents")):
|
139 |
+
# Load the pre-trained model for the current category
|
140 |
+
model = load_model(category)
|
141 |
+
|
142 |
+
# Skip the category if model loading fails
|
143 |
+
if model is not None:
|
144 |
+
# Score the document
|
145 |
+
prediction, probability = score_document(model, text_data)
|
146 |
+
|
147 |
+
# Create a DataFrame for the current result
|
148 |
+
new_row = pd.DataFrame({
|
149 |
+
"Category": [category],
|
150 |
+
"Prediction": [prediction],
|
151 |
+
"Probability": [probability]
|
152 |
+
})
|
153 |
+
|
154 |
+
# Use pd.concat to append the new row to the DataFrame
|
155 |
+
result_df = pd.concat([result_df, new_row], ignore_index=True)
|
156 |
+
|
157 |
+
# Update the progress bar
|
158 |
+
progress_bar.progress((i + 1) / total_categories)
|
159 |
+
|
160 |
+
# Estimate remaining time
|
161 |
+
elapsed_time = time.time() - start_time
|
162 |
+
estimated_total_time = (elapsed_time / (i + 1)) * total_categories
|
163 |
+
st.write(f"Elapsed time: {elapsed_time:.2f}s, Estimated time remaining: {estimated_total_time - elapsed_time:.2f}s")
|
164 |
+
|
165 |
+
# Save results to CSV
|
166 |
+
csv = result_df.to_csv(index=False).encode('utf-8')
|
167 |
+
st.download_button(
|
168 |
+
label="Download results as CSV",
|
169 |
+
data=csv,
|
170 |
+
file_name="document_scoring_results.csv",
|
171 |
+
mime="text/csv",
|
172 |
+
)
|
173 |
+
|
174 |
+
# Display completion message
|
175 |
+
st.success("Document scoring complete!")
|
176 |
+
|
177 |
+
st.write("Note: Ensure the uploaded document is in .txt format containing text data.")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
pandas
|
4 |
+
tqdm
|
5 |
+
simpletransformers
|
6 |
+
dropbox==11.34.0
|