mgmtprofessor
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
9 |
# Set up Streamlit app
|
10 |
st.title("An App to Score Firm-Generated Text on Eight Risk Factors")
|
11 |
st.write("Note: You can either upload a CSV file or a single TXT file for scoring.")
|
12 |
-
st.write("If uploading a CSV file, ensure that it contains the following columns: cik, fyear, Item 1A. Item 1A should contain the respective risk factors section for each firm-year observation.")
|
13 |
st.write("If uploading a txt file, ensure it contains the respective risk factors section for each firm-year observation.")
|
14 |
# Hugging Face model directories
|
15 |
model_directories = {
|
@@ -63,7 +63,7 @@ def score_document(model, tokenizer, text_data):
|
|
63 |
|
64 |
# Function to find the relevant text column
|
65 |
def get_text_column(df):
|
66 |
-
possible_columns = ['Item 1A', 'Item 1A.', 'Item 1A. Risk Factors']
|
67 |
for col in possible_columns:
|
68 |
if col in df.columns:
|
69 |
return col
|
@@ -87,7 +87,7 @@ if file_type == "CSV":
|
|
87 |
text_column = get_text_column(df)
|
88 |
|
89 |
if text_column is None:
|
90 |
-
st.error("No valid text column found. Please ensure your CSV contains 'Item 1A', 'Item 1A.',
|
91 |
else:
|
92 |
# Extract text data from the identified column
|
93 |
text_data = df[text_column].dropna().tolist() # Extracts all non-empty rows
|
|
|
9 |
# Set up Streamlit app
|
10 |
st.title("An App to Score Firm-Generated Text on Eight Risk Factors")
|
11 |
st.write("Note: You can either upload a CSV file or a single TXT file for scoring.")
|
12 |
+
st.write("If uploading a CSV file, ensure that it contains the following columns: cik, fyear, Item 1A (or Text). Item 1A should contain the respective risk factors section for each firm-year observation.")
|
13 |
st.write("If uploading a txt file, ensure it contains the respective risk factors section for each firm-year observation.")
|
14 |
# Hugging Face model directories
|
15 |
model_directories = {
|
|
|
63 |
|
64 |
# Function to find the relevant text column
|
65 |
def get_text_column(df):
|
66 |
+
possible_columns = ['Item 1A', 'Item 1A.', 'Item 1A. Risk Factors', 'text', 'Text']
|
67 |
for col in possible_columns:
|
68 |
if col in df.columns:
|
69 |
return col
|
|
|
87 |
text_column = get_text_column(df)
|
88 |
|
89 |
if text_column is None:
|
90 |
+
st.error("No valid text column found. Please ensure your CSV contains 'Item 1A', 'Item 1A.', 'Item 1A. Risk Factors', 'Text', or 'text'.")
|
91 |
else:
|
92 |
# Extract text data from the identified column
|
93 |
text_data = df[text_column].dropna().tolist() # Extracts all non-empty rows
|