mgoin's picture
Update app.py
263e293 verified
raw
history blame
3.66 kB
import os
import uuid
import gradio as gr
import torch
from transformers import AutoTokenizer
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MODEL_ID = "neuralmagic/OpenHermes-2.5-Mistral-7B-pruned50"
DESCRIPTION = f"""\
# NM vLLM Chat
Model: {MODEL_ID}
"""
if not torch.cuda.is_available():
raise ValueError("Running on CPU 🥶 This demo does not work on CPU.")
engine_args = AsyncEngineArgs(
model=MODEL_ID,
sparsity="sparse_w16a16",
max_model_len=MAX_INPUT_TOKEN_LENGTH
)
engine = AsyncLLMEngine.from_engine_args(engine_args)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.use_default_system_prompt = False
async def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
formatted_conversation = tokenizer.apply_chat_template(
conversation, tokenize=False, add_generation_prompt=True
)
sampling_params = SamplingParams(
max_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
stream = await engine.add_request(
uuid.uuid4().hex, formatted_conversation, sampling_params
)
async for request_output in stream:
text = request_output.outputs[0].text
yield text
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
# with gr.Blocks(css="style.css") as demo:
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(
# value="Duplicate Space for private use", elem_id="duplicate-button"
# )
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()