File size: 1,652 Bytes
0305ee7 e88510d 0305ee7 e88510d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Original Stable Diffusion (1.4)
import torch
import models
from models import pipelines
from shared import model_dict, DEFAULT_OVERALL_NEGATIVE_PROMPT
import gc
from io import BytesIO
import base64
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
torch.set_grad_enabled(False)
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
guidance_scale = 7.5 # Scale for classifier-free guidance
batch_size = 1
# h, w
image_scale = (512, 512)
bg_negative = DEFAULT_OVERALL_NEGATIVE_PROMPT
# Using dpm scheduler by default
def run(prompt, scheduler_key='dpm_scheduler', bg_seed=1, num_inference_steps=20):
print(f"prompt: {prompt}")
generator = torch.manual_seed(bg_seed)
prompts = [prompt]
input_embeddings = models.encode_prompts(prompts=prompts, tokenizer=tokenizer, text_encoder=text_encoder, negative_prompt=bg_negative)
latents = models.get_unscaled_latents(batch_size, unet.config.in_channels, height, width, generator, dtype)
latents = latents * scheduler.init_noise_sigma
pipelines.gligen_enable_fuser(model_dict['unet'], enabled=False)
_, images = pipelines.generate(
model_dict, latents, input_embeddings, num_inference_steps,
guidance_scale=guidance_scale, scheduler_key=scheduler_key
)
gc.collect()
torch.cuda.empty_cache()
with BytesIO() as buffer:
np.save(buffer, images[0])
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
return images[0], img_str |