File size: 11,055 Bytes
0305ee7
 
 
 
 
 
 
 
 
 
7134722
 
dc975c3
0305ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7134722
dc975c3
 
 
 
 
 
 
 
 
 
0305ee7
2e3574c
0305ee7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
version = "v3.0"

import torch
import numpy as np
import models
import utils
from models import pipelines, sam
from utils import parse, latents
from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
import gc
from io import BytesIO
import base64
import PIL.Image

verbose = False

vae, tokenizer, text_encoder, unet, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.dtype

model_dict.update(sam_model_dict)


# Hyperparams
height = 512  # default height of Stable Diffusion
width = 512  # default width of Stable Diffusion
H, W = height // 8, width // 8 # size of the latent
guidance_scale = 7.5  # Scale for classifier-free guidance

# batch size that is not 1 is not supported
overall_batch_size = 1

# discourage masks with confidence below
discourage_mask_below_confidence = 0.85

# discourage masks with iou (with coarse binarized attention mask) below
discourage_mask_below_coarse_iou = 0.25

run_ind = None


def generate_single_object_with_box_batch(prompts, bboxes, phrases, words, input_latents_list, input_embeddings, 
                                    sam_refine_kwargs, num_inference_steps, gligen_scheduled_sampling_beta=0.3, 
                                    verbose=False, scheduler_key=None, visualize=True, batch_size=None):
    # batch_size=None: does not limit the batch size (pass all input together)
    
    # prompts and words are not used since we don't have cross-attention control in this function
    
    input_latents = torch.cat(input_latents_list, dim=0)
    
    # We need to "unsqueeze" to tell that we have only one box and phrase in each batch item
    bboxes, phrases = [[item] for item in bboxes], [[item] for item in phrases]
    
    input_len = len(bboxes)
    assert len(bboxes) == len(phrases), f"{len(bboxes)} != {len(phrases)}"
    
    if batch_size is None:
        batch_size = input_len
    
    run_times = int(np.ceil(input_len / batch_size))
    mask_selected_list, single_object_pil_images_box_ann, latents_all = [], [], []
    for batch_idx in range(run_times):
        input_latents_batch, bboxes_batch, phrases_batch = input_latents[batch_idx * batch_size:(batch_idx + 1) * batch_size], \
            bboxes[batch_idx * batch_size:(batch_idx + 1) * batch_size], phrases[batch_idx * batch_size:(batch_idx + 1) * batch_size]
        input_embeddings_batch = input_embeddings[0], input_embeddings[1][batch_idx * batch_size:(batch_idx + 1) * batch_size]
        
        _, single_object_images_batch, single_object_pil_images_box_ann_batch, latents_all_batch = pipelines.generate_gligen(
            model_dict, input_latents_batch, input_embeddings_batch, num_inference_steps, bboxes_batch, phrases_batch, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, 
            guidance_scale=guidance_scale, return_saved_cross_attn=False,
            return_box_vis=True, save_all_latents=True, batched_condition=True, scheduler_key=scheduler_key
        )
        
        gc.collect()
        torch.cuda.empty_cache()
        
        # `sam_refine_boxes` also calls `empty_cache` so we don't need to explicitly empty the cache again.
        mask_selected, _ = sam.sam_refine_boxes(sam_input_images=single_object_images_batch, boxes=bboxes_batch, model_dict=model_dict, verbose=verbose, **sam_refine_kwargs)
        
        mask_selected_list.append(np.array(mask_selected)[:, 0])
        single_object_pil_images_box_ann.append(single_object_pil_images_box_ann_batch)
        latents_all.append(latents_all_batch)
    
    single_object_pil_images_box_ann, latents_all = sum(single_object_pil_images_box_ann, []), torch.cat(latents_all, dim=1)
    
    # mask_selected_list: List(batch)[List(image)[List(box)[Array of shape (64, 64)]]]
    
    mask_selected = np.concatenate(mask_selected_list, axis=0)
    mask_selected = mask_selected.reshape((-1, *mask_selected.shape[-2:]))
    
    assert mask_selected.shape[0] == input_latents.shape[0], f"{mask_selected.shape[0]} != {input_latents.shape[0]}"
    
    print(mask_selected.shape)
    
    mask_selected_tensor = torch.tensor(mask_selected)
    
    latents_all = latents_all.transpose(0,1)[:,:,None,...]
    
    gc.collect()
    torch.cuda.empty_cache()
    
    return latents_all, mask_selected_tensor, single_object_pil_images_box_ann

def get_masked_latents_all_list(so_prompt_phrase_word_box_list, input_latents_list, so_input_embeddings, verbose=False, **kwargs):
    latents_all_list, mask_tensor_list = [], []
   
    if not so_prompt_phrase_word_box_list:
        return latents_all_list, mask_tensor_list
    
    prompts, bboxes, phrases, words = [], [], [], []

    for prompt, phrase, word, box in so_prompt_phrase_word_box_list:
        prompts.append(prompt)
        bboxes.append(box)
        phrases.append(phrase)
        words.append(word)
    
    latents_all_list, mask_tensor_list, so_img_list = generate_single_object_with_box_batch(prompts, bboxes, phrases, words, input_latents_list, input_embeddings=so_input_embeddings, verbose=verbose, **kwargs)

    return latents_all_list, mask_tensor_list, so_img_list


# Note: need to keep the supervision, especially the box corrdinates, corresponds to each other in single object and overall.

def run(
    spec, bg_seed = 1, overall_prompt_override="", fg_seed_start = 20, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta = 0.3, num_inference_steps = 20,
    so_center_box = False, fg_blending_ratio = 0.1, scheduler_key='dpm_scheduler', so_negative_prompt = DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt = DEFAULT_OVERALL_NEGATIVE_PROMPT, so_horizontal_center_only = True, 
    align_with_overall_bboxes = False, horizontal_shift_only = True, use_autocast = False, so_batch_size = None
):
    """    
    so_center_box: using centered box in single object generation
    so_horizontal_center_only: move to the center horizontally only
    
    align_with_overall_bboxes: Align the center of the mask, latents, and cross-attention with the center of the box in overall bboxes
    horizontal_shift_only: only shift horizontally for the alignment of mask, latents, and cross-attention
    """
    
    print("generation:", spec, bg_seed, fg_seed_start, frozen_step_ratio, gligen_scheduled_sampling_beta)
    
    frozen_step_ratio = min(max(frozen_step_ratio, 0.), 1.)
    frozen_steps = int(num_inference_steps * frozen_step_ratio)

    if True:
        so_prompt_phrase_word_box_list, overall_prompt, overall_phrases_words_bboxes = parse.convert_spec(spec, height, width, verbose=verbose)

    if overall_prompt_override and overall_prompt_override.strip():
        overall_prompt = overall_prompt_override.strip()

    overall_phrases, overall_words, overall_bboxes = [item[0] for item in overall_phrases_words_bboxes], [item[1] for item in overall_phrases_words_bboxes], [item[2] for item in overall_phrases_words_bboxes]

    # The so box is centered but the overall boxes are not (since we need to place to the right place).
    if so_center_box:
        so_prompt_phrase_word_box_list = [(prompt, phrase, word, utils.get_centered_box(bbox, horizontal_center_only=so_horizontal_center_only)) for prompt, phrase, word, bbox in so_prompt_phrase_word_box_list]
        if verbose:
            print(f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}")
    so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list]

    sam_refine_kwargs = dict(
        discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
        height=height, width=width, H=H, W=W
    )
    
    # Note that so and overall use different negative prompts

    with torch.autocast("cuda", enabled=use_autocast):
        so_prompts = [item[0] for item in so_prompt_phrase_word_box_list]
        if so_prompts:
            so_input_embeddings = models.encode_prompts(prompts=so_prompts, tokenizer=tokenizer, text_encoder=text_encoder, negative_prompt=so_negative_prompt, one_uncond_input_only=True)
        else:
            so_input_embeddings = []

        overall_input_embeddings = models.encode_prompts(prompts=[overall_prompt], tokenizer=tokenizer, negative_prompt=overall_negative_prompt, text_encoder=text_encoder)
        
        input_latents_list, latents_bg = latents.get_input_latents_list(
            model_dict, bg_seed=bg_seed, fg_seed_start=fg_seed_start, 
            so_boxes=so_boxes, fg_blending_ratio=fg_blending_ratio, height=height, width=width, verbose=False
        )
        latents_all_list, mask_tensor_list, so_img_list = get_masked_latents_all_list(
            so_prompt_phrase_word_box_list, input_latents_list, 
            gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
            sam_refine_kwargs=sam_refine_kwargs, so_input_embeddings=so_input_embeddings, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key, verbose=verbose, batch_size=so_batch_size
        )

        

        composed_latents, foreground_indices, offset_list = latents.compose_latents_with_alignment(
            model_dict, latents_all_list, mask_tensor_list, num_inference_steps, 
            overall_batch_size, height, width, latents_bg=latents_bg, 
            align_with_overall_bboxes=align_with_overall_bboxes, overall_bboxes=overall_bboxes,
            horizontal_shift_only=horizontal_shift_only
        )
        
        overall_bboxes_flattened, overall_phrases_flattened = [], []
        for overall_bboxes_item, overall_phrase in zip(overall_bboxes, overall_phrases):
            for overall_bbox in overall_bboxes_item:
                overall_bboxes_flattened.append(overall_bbox)
                overall_phrases_flattened.append(overall_phrase)

        # Generate with composed latents

        # Foreground should be frozen
        frozen_mask = foreground_indices != 0
        
        regen_latents, images = pipelines.generate_gligen(
            model_dict, composed_latents, overall_input_embeddings, num_inference_steps, 
            overall_bboxes_flattened, overall_phrases_flattened, guidance_scale=guidance_scale,
            gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
            frozen_steps=frozen_steps, frozen_mask=frozen_mask, scheduler_key=scheduler_key
        )

        print(f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)")
        print("Generation from composed latents (with semantic guidance)")

        # display(Image.fromarray(images[0]), "img", run_ind)
        
    gc.collect()
    torch.cuda.empty_cache()

    # Convert to PIL Image
    image = PIL.Image.fromarray(images[0])
    
    # Save as PNG in memory
    buffer = BytesIO()
    image.save(buffer, format='PNG')
    
    # Encode PNG to base64
    png_bytes = buffer.getvalue()
    base64_string = base64.b64encode(png_bytes).decode('utf-8')\
        
    return images[0], so_img_list, base64_string