File size: 11,055 Bytes
0305ee7 7134722 dc975c3 0305ee7 7134722 dc975c3 0305ee7 2e3574c 0305ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
version = "v3.0"
import torch
import numpy as np
import models
import utils
from models import pipelines, sam
from utils import parse, latents
from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
import gc
from io import BytesIO
import base64
import PIL.Image
verbose = False
vae, tokenizer, text_encoder, unet, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.dtype
model_dict.update(sam_model_dict)
# Hyperparams
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
H, W = height // 8, width // 8 # size of the latent
guidance_scale = 7.5 # Scale for classifier-free guidance
# batch size that is not 1 is not supported
overall_batch_size = 1
# discourage masks with confidence below
discourage_mask_below_confidence = 0.85
# discourage masks with iou (with coarse binarized attention mask) below
discourage_mask_below_coarse_iou = 0.25
run_ind = None
def generate_single_object_with_box_batch(prompts, bboxes, phrases, words, input_latents_list, input_embeddings,
sam_refine_kwargs, num_inference_steps, gligen_scheduled_sampling_beta=0.3,
verbose=False, scheduler_key=None, visualize=True, batch_size=None):
# batch_size=None: does not limit the batch size (pass all input together)
# prompts and words are not used since we don't have cross-attention control in this function
input_latents = torch.cat(input_latents_list, dim=0)
# We need to "unsqueeze" to tell that we have only one box and phrase in each batch item
bboxes, phrases = [[item] for item in bboxes], [[item] for item in phrases]
input_len = len(bboxes)
assert len(bboxes) == len(phrases), f"{len(bboxes)} != {len(phrases)}"
if batch_size is None:
batch_size = input_len
run_times = int(np.ceil(input_len / batch_size))
mask_selected_list, single_object_pil_images_box_ann, latents_all = [], [], []
for batch_idx in range(run_times):
input_latents_batch, bboxes_batch, phrases_batch = input_latents[batch_idx * batch_size:(batch_idx + 1) * batch_size], \
bboxes[batch_idx * batch_size:(batch_idx + 1) * batch_size], phrases[batch_idx * batch_size:(batch_idx + 1) * batch_size]
input_embeddings_batch = input_embeddings[0], input_embeddings[1][batch_idx * batch_size:(batch_idx + 1) * batch_size]
_, single_object_images_batch, single_object_pil_images_box_ann_batch, latents_all_batch = pipelines.generate_gligen(
model_dict, input_latents_batch, input_embeddings_batch, num_inference_steps, bboxes_batch, phrases_batch, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
guidance_scale=guidance_scale, return_saved_cross_attn=False,
return_box_vis=True, save_all_latents=True, batched_condition=True, scheduler_key=scheduler_key
)
gc.collect()
torch.cuda.empty_cache()
# `sam_refine_boxes` also calls `empty_cache` so we don't need to explicitly empty the cache again.
mask_selected, _ = sam.sam_refine_boxes(sam_input_images=single_object_images_batch, boxes=bboxes_batch, model_dict=model_dict, verbose=verbose, **sam_refine_kwargs)
mask_selected_list.append(np.array(mask_selected)[:, 0])
single_object_pil_images_box_ann.append(single_object_pil_images_box_ann_batch)
latents_all.append(latents_all_batch)
single_object_pil_images_box_ann, latents_all = sum(single_object_pil_images_box_ann, []), torch.cat(latents_all, dim=1)
# mask_selected_list: List(batch)[List(image)[List(box)[Array of shape (64, 64)]]]
mask_selected = np.concatenate(mask_selected_list, axis=0)
mask_selected = mask_selected.reshape((-1, *mask_selected.shape[-2:]))
assert mask_selected.shape[0] == input_latents.shape[0], f"{mask_selected.shape[0]} != {input_latents.shape[0]}"
print(mask_selected.shape)
mask_selected_tensor = torch.tensor(mask_selected)
latents_all = latents_all.transpose(0,1)[:,:,None,...]
gc.collect()
torch.cuda.empty_cache()
return latents_all, mask_selected_tensor, single_object_pil_images_box_ann
def get_masked_latents_all_list(so_prompt_phrase_word_box_list, input_latents_list, so_input_embeddings, verbose=False, **kwargs):
latents_all_list, mask_tensor_list = [], []
if not so_prompt_phrase_word_box_list:
return latents_all_list, mask_tensor_list
prompts, bboxes, phrases, words = [], [], [], []
for prompt, phrase, word, box in so_prompt_phrase_word_box_list:
prompts.append(prompt)
bboxes.append(box)
phrases.append(phrase)
words.append(word)
latents_all_list, mask_tensor_list, so_img_list = generate_single_object_with_box_batch(prompts, bboxes, phrases, words, input_latents_list, input_embeddings=so_input_embeddings, verbose=verbose, **kwargs)
return latents_all_list, mask_tensor_list, so_img_list
# Note: need to keep the supervision, especially the box corrdinates, corresponds to each other in single object and overall.
def run(
spec, bg_seed = 1, overall_prompt_override="", fg_seed_start = 20, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta = 0.3, num_inference_steps = 20,
so_center_box = False, fg_blending_ratio = 0.1, scheduler_key='dpm_scheduler', so_negative_prompt = DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt = DEFAULT_OVERALL_NEGATIVE_PROMPT, so_horizontal_center_only = True,
align_with_overall_bboxes = False, horizontal_shift_only = True, use_autocast = False, so_batch_size = None
):
"""
so_center_box: using centered box in single object generation
so_horizontal_center_only: move to the center horizontally only
align_with_overall_bboxes: Align the center of the mask, latents, and cross-attention with the center of the box in overall bboxes
horizontal_shift_only: only shift horizontally for the alignment of mask, latents, and cross-attention
"""
print("generation:", spec, bg_seed, fg_seed_start, frozen_step_ratio, gligen_scheduled_sampling_beta)
frozen_step_ratio = min(max(frozen_step_ratio, 0.), 1.)
frozen_steps = int(num_inference_steps * frozen_step_ratio)
if True:
so_prompt_phrase_word_box_list, overall_prompt, overall_phrases_words_bboxes = parse.convert_spec(spec, height, width, verbose=verbose)
if overall_prompt_override and overall_prompt_override.strip():
overall_prompt = overall_prompt_override.strip()
overall_phrases, overall_words, overall_bboxes = [item[0] for item in overall_phrases_words_bboxes], [item[1] for item in overall_phrases_words_bboxes], [item[2] for item in overall_phrases_words_bboxes]
# The so box is centered but the overall boxes are not (since we need to place to the right place).
if so_center_box:
so_prompt_phrase_word_box_list = [(prompt, phrase, word, utils.get_centered_box(bbox, horizontal_center_only=so_horizontal_center_only)) for prompt, phrase, word, bbox in so_prompt_phrase_word_box_list]
if verbose:
print(f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}")
so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list]
sam_refine_kwargs = dict(
discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
height=height, width=width, H=H, W=W
)
# Note that so and overall use different negative prompts
with torch.autocast("cuda", enabled=use_autocast):
so_prompts = [item[0] for item in so_prompt_phrase_word_box_list]
if so_prompts:
so_input_embeddings = models.encode_prompts(prompts=so_prompts, tokenizer=tokenizer, text_encoder=text_encoder, negative_prompt=so_negative_prompt, one_uncond_input_only=True)
else:
so_input_embeddings = []
overall_input_embeddings = models.encode_prompts(prompts=[overall_prompt], tokenizer=tokenizer, negative_prompt=overall_negative_prompt, text_encoder=text_encoder)
input_latents_list, latents_bg = latents.get_input_latents_list(
model_dict, bg_seed=bg_seed, fg_seed_start=fg_seed_start,
so_boxes=so_boxes, fg_blending_ratio=fg_blending_ratio, height=height, width=width, verbose=False
)
latents_all_list, mask_tensor_list, so_img_list = get_masked_latents_all_list(
so_prompt_phrase_word_box_list, input_latents_list,
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
sam_refine_kwargs=sam_refine_kwargs, so_input_embeddings=so_input_embeddings, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key, verbose=verbose, batch_size=so_batch_size
)
composed_latents, foreground_indices, offset_list = latents.compose_latents_with_alignment(
model_dict, latents_all_list, mask_tensor_list, num_inference_steps,
overall_batch_size, height, width, latents_bg=latents_bg,
align_with_overall_bboxes=align_with_overall_bboxes, overall_bboxes=overall_bboxes,
horizontal_shift_only=horizontal_shift_only
)
overall_bboxes_flattened, overall_phrases_flattened = [], []
for overall_bboxes_item, overall_phrase in zip(overall_bboxes, overall_phrases):
for overall_bbox in overall_bboxes_item:
overall_bboxes_flattened.append(overall_bbox)
overall_phrases_flattened.append(overall_phrase)
# Generate with composed latents
# Foreground should be frozen
frozen_mask = foreground_indices != 0
regen_latents, images = pipelines.generate_gligen(
model_dict, composed_latents, overall_input_embeddings, num_inference_steps,
overall_bboxes_flattened, overall_phrases_flattened, guidance_scale=guidance_scale,
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
frozen_steps=frozen_steps, frozen_mask=frozen_mask, scheduler_key=scheduler_key
)
print(f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)")
print("Generation from composed latents (with semantic guidance)")
# display(Image.fromarray(images[0]), "img", run_ind)
gc.collect()
torch.cuda.empty_cache()
# Convert to PIL Image
image = PIL.Image.fromarray(images[0])
# Save as PNG in memory
buffer = BytesIO()
image.save(buffer, format='PNG')
# Encode PNG to base64
png_bytes = buffer.getvalue()
base64_string = base64.b64encode(png_bytes).decode('utf-8')\
return images[0], so_img_list, base64_string
|